People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mitsuda, Kazuhisa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Microcalorimeter Instruments for the Spectrum-R(X)G and NeXT Missions
Abstract
X-ray spectrometers utilizing a microcalorimeter array are presently under study for the Russian Spectrum R-G (or Spectrum-X-Gamma) mission, which is to be launched in 2011, and for the Japanese NeXT (New X-ray Telescope or Non-thermal energy eXploration Telescope) mission, whose launch is expected to be in 2012 to 2015. The primary instrument of Spectrum R-G is eROSITA, which will make an all sky survey in the 0.1 10 keV range using an array of seven telescopes and X-ray CCD cameras. The mission also carries smaller instruments, a wide-field monitor (Lobster) and a hard X-ray telescope (ART). We are proposing SXC—the Spectrum-X Calorimeter—to obtain spatially-resolved precision spectra of a number of nearby massive clusters of galaxies during an initial 6-month pointed phase, and to obtain a detailed spectral map of the soft X-ray diffuse background during the 4-year survey phase. The NeXT mission is a combination of wide band X-ray spectroscopy provided by multi-layer coating, focusing X-ray mirrors and pixel detectors, and high resolution soft X-ray spectroscopy by microcalorimeter instrument, SXS—the Soft X-ray Spectrometer. The effective area of the SXS is about 20 times larger than that of SXC at the iron K line energy (6.7 keV) while the solid angle of the field of view is by a factor of 15 smaller. One of the major scientific objectives of SXS is to determine turbulent and/or macroscopic velocities in the hot gas of distant clusters of galaxies. Both of the instruments will use 6×6 microcalorimeter array similar to the one launched on Suzaku, while both will adopt a <SUP>3</SUP>He Joule Thomson cooler and two-stage Stirling cycle in the cryogenic systems. The <SUP>3</SUP>He Joule Thomson cooler provides a thermal guard to liquid He but it can also work as a 1.8 K heat bath for the adiabatic demagnetization refrigerator....