Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Persiantseva, Natalia M.

  • Google
  • 1
  • 5
  • 56

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2007Heterogeneities in the Microstructure and Composition of Aircraft Engine Combustor Soot: Impact on the Water Uptake56citations

Places of action

Chart of shared publication
Ferry, Daniel
1 / 12 shared
Shonija, Natalia K.
1 / 3 shared
Popovicheva, Olga B.
1 / 4 shared
Suzanne, Jean
1 / 4 shared
Demirdjian, Benjamin
1 / 9 shared
Chart of publication period
2007

Co-Authors (by relevance)

  • Ferry, Daniel
  • Shonija, Natalia K.
  • Popovicheva, Olga B.
  • Suzanne, Jean
  • Demirdjian, Benjamin
OrganizationsLocationPeople

article

Heterogeneities in the Microstructure and Composition of Aircraft Engine Combustor Soot: Impact on the Water Uptake

  • Ferry, Daniel
  • Shonija, Natalia K.
  • Popovicheva, Olga B.
  • Suzanne, Jean
  • Persiantseva, Natalia M.
  • Demirdjian, Benjamin
Abstract

Size, morphology, microstructure, chemical composition and hygroscopic properties of aircraft engine combustor (AEC) soot particles are studied by using a combination of several methods, namely atomic force microscopy, transmission electron microscopy, gravimetry, ionic chromatography analysis and wetting observations. From the microstructure and the composition of soot agglomerates, we find that we can separate AEC soot in two fractions having quite different physico-chemical properties: a main fraction of particles containing essentially amorphous carbon with small amounts of oxygen, sulfur and iron and a fraction of impurities characterized by various structures and a large amount of impurities. These properties of aircraft engine combustor soot are compared to those of soot obtained by burning TC1 aviation kerosene in a laboratory burner. It is shown that TC1 soot can be a good surrogate of the AEC main fraction. Such a finding allows us to perform water uptake measurements and to conclude that the AEC main fraction is rather hydrophobic whereas the AEC fraction of impurities is highly hydrophilic The ability of the two fractions of aircraft engine combustor soot to act as cloud condensation nuclei is discussed with respect to their implication in contrail and cirrus formation.

Topics
  • impedance spectroscopy
  • microstructure
  • amorphous
  • Carbon
  • Oxygen
  • atomic force microscopy
  • chemical composition
  • transmission electron microscopy
  • iron
  • chromatography