Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yf, Shen

  • Google
  • 1
  • 3
  • 80

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Bioactive calcium silicate/poly-ε-caprolactone composite scaffolds 3D printed under mild conditions for bone tissue engineering.80citations

Places of action

Chart of shared publication
Yh, Lin
1 / 2 shared
Ya, Wu
1 / 2 shared
My, Shie
1 / 1 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Yh, Lin
  • Ya, Wu
  • My, Shie
OrganizationsLocationPeople

article

Bioactive calcium silicate/poly-ε-caprolactone composite scaffolds 3D printed under mild conditions for bone tissue engineering.

  • Yh, Lin
  • Yf, Shen
  • Ya, Wu
  • My, Shie
Abstract

The present study provides a solvent-free processing method for establishing the ideal porous 3-dimension (3D) scaffold filled with different ratios of calcium silicate-based (CS) powder and polycaprolactone (PCL) for 3D bone substitute application. Characterization of hybrid scaffolds developed underwent assessments for physicochemical properties and biodegradation. Adhesion and growth of human Wharton's Jelly mesenchymal stem cells (WJMSCs) on the CS/PCL blended scaffold were investigated in vitro. Cell attachment and morphology were examined by scanning electron microscope (SEM) and confocal microscope observations. Colorimetric assay was tested for assessing cell metabolic activity. In addition, RT-qPCR was also performed for the osteogenic-related and angiogenesis-related gene expression. As a result, the hydrophilicity of the scaffolds was further significantly improved after we additive CS into PCL, as well as the compressive strength up to 5.8 MPa. SEM showed that a great amount of precipitated bone-like apatite formed on the scaffold surface after immersed in the simulated body fluid. The 3D-printed scaffolds were found to enhance cell adhesion, proliferation and differentiation. Additionally, results of osteogenesis and angiogenesis proteins were expressed obviously greater in the response of WJMSCs. These results indicate the CS/PCL composite exhibited a favorable bioactivity and osteoconductive properties that could be served as a promising biomaterial for bone tissue engineering scaffolds.

Topics
  • porous
  • surface
  • scanning electron microscopy
  • strength
  • composite
  • Calcium
  • bioactivity