Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Castner, Dg

  • Google
  • 1
  • 5
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015The grafting of a thin layer of poly(sodium styrene sulfonate) onto poly(epsilon-caprolactone) surface can enhance fibroblast behavior31citations

Places of action

Chart of shared publication
Rohman, G.
1 / 1 shared
Huot, S.
1 / 1 shared
Radu Bostan, G.
1 / 1 shared
Migonney, V.
1 / 4 shared
Vilas Boas, M.
1 / 3 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Rohman, G.
  • Huot, S.
  • Radu Bostan, G.
  • Migonney, V.
  • Vilas Boas, M.
OrganizationsLocationPeople

article

The grafting of a thin layer of poly(sodium styrene sulfonate) onto poly(epsilon-caprolactone) surface can enhance fibroblast behavior

  • Rohman, G.
  • Huot, S.
  • Radu Bostan, G.
  • Migonney, V.
  • Castner, Dg
  • Vilas Boas, M.
Abstract

Poly(sodium styrene sulfonate) (pNaSS) was grafted onto poly(epsilon-caprolatone) (PCL) surfaces via ozonation and graft polymerization. The effect of ozonation and polymerization time, as well as the Mohr's salt concentration in the grafting solution, on the degree of grafting was investigated. The degree of grafting was determined through toluidine blue staining. The surface chemical change was characterized by attenuated total reflection Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The result demonstrated that the grafting did not induce any degradation of PCL, and that pNaSS was grafted onto PCL as a thin and covalently stable layer. Furthermore, the modified PCL surface reveals a significant increase in the metabolic activity of fibroblastic cells, as well as a better cell spreading with higher adhesion strength. Consequently, bioactivity of PCL is greatly enhanced by immobilizing a thin layer of pNaSS onto its surface. The grafting of pNaSS is a promising approach to increase the bioactivity of PCL-based materials used in tissue engineering applications, such as ligament reconstruction.

Topics
  • impedance spectroscopy
  • surface
  • x-ray photoelectron spectroscopy
  • strength
  • Sodium
  • Energy-dispersive X-ray spectroscopy
  • Fourier transform infrared spectroscopy
  • bioactivity