Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Campion, Charlie

  • Google
  • 1
  • 3
  • 30

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Silicate-substituted calcium phosphate with enhanced strut porosity stimulates osteogenic differentiation of human mesenchymal stem cells30citations

Places of action

Chart of shared publication
Blunn, Gw
1 / 21 shared
Hutchens, Stacy
1 / 1 shared
Godoy, Roberta Ferro De
1 / 1 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Blunn, Gw
  • Hutchens, Stacy
  • Godoy, Roberta Ferro De
OrganizationsLocationPeople

article

Silicate-substituted calcium phosphate with enhanced strut porosity stimulates osteogenic differentiation of human mesenchymal stem cells

  • Blunn, Gw
  • Campion, Charlie
  • Hutchens, Stacy
  • Godoy, Roberta Ferro De
Abstract

<p>While many synthetic ceramic bone graft substitutes (BGSs) have osteoconductive properties (e.g. provide a physical scaffold for osteointegration of surrounding bone tissue), certain BGSs are osteostimulative in that they actively upregulate mesenchymal stem cell proliferation and stimulate differentiation into osteoblast-like cells. The osteostimulative properties of silicate-substituted calcium phosphate with enhanced porosity (SiCaP EP) were evaluated in vitro with STRO-1+ immunoselected human bone marrow derived mesenchymal stem cells (HBMSCs). Osteostimulative materials (SiCaP) and Bioglass 45S5 (Bioglass) were also assessed as positive controls along with non-silicate substituted hydroxyapatite as a negative control. HBMSCs were also assessed on Thermanox discs cultured in basal and osteogenic media to determine when osteogenic differentiation could be significantly detected with this in vitro cell system. HBMSC viability and necrosis, total DNA content, alkaline phosphatase (ALP) expression, and osteocalcin expression were evaluated after 7, 14, 21, and 28 days. It was demonstrated that SiCaP EP is osteostimulative based on its propensity to support STRO-1+ HBMSC proliferation and ability to promote the differentiation of HBMSCs down the osteoblastic lineage from ALP-expressing, matrix-producing osteoblasts to Osteocalcin-producing pre-osteocytes without the presence of external osteogenic factors. SiCaP EP permitted greater HBMSC attachment as well as ALP and Osteocalcin expression than Bioglass which may be attributed to its microstructure and chemistry.</p>

Topics
  • impedance spectroscopy
  • porosity
  • ceramic
  • Calcium