People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Roohpour, N.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2018Hydration dependent mechanical performance of denture adhesive hydrogelscitations
- 2016Protein adsorption capability on polyurethane and modified-polyurethane membrane for periodontal guided tissue regeneration applicationscitations
- 2009Synthesis and characterization of a novel fast-set proline-derivative-containing glass ionomer cement with enhanced mechanical propertiescitations
- 2009Effects of N-vinylpyrrolidone (NVP) containing polyelectrolytes on surface properties of conventional glass-ionomer cements (GIC)citations
- 2009Synthesis of a proline-modified acrylic acid copolymer in supercritical CO2 for glass-ionomer dental cement applicationscitations
- 2009Synthesis and characterisation of enhanced barrier polyurethane for encapsulation of implantable medical devicescitations
- 2009Isopropyl myristate-modified polyether-urethane coatings as protective barriers for implantable medical devicescitations
- 2008Polymeric barrier membranes for device packaging, diffusive control and biocompatibilitycitations
- 2008Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC)citations
- 2008Synthesis of N-vinylpyrrolidone modified acrylic acid copolymer in supercritical fluids and its application in dental glass-ionomer cementscitations
Places of action
Organizations | Location | People |
---|
article
Synthesis of N-vinylpyrrolidone modified acrylic acid copolymer in supercritical fluids and its application in dental glass-ionomer cements
Abstract
Compressed fluids such as supercritical CO2 offer marvellous opportunities for the synthesis of polymers, particularly in applications in medicine and dentistry. It has several advantages in comparison to conventional polymerisation solvents, such as enhanced kinetics and simplified solvent removal process. In this study, poly (acrylic acid-co-itaconic acid-co-N-vinylpyrrolidone) (PAA-IA-NVP), a modified glass-ionomer polymer, was synthesised in supercritical CO2 (sc-CO2) and methanol as a co-solvent. The synthesised polymer was characterized by 1H-NMR, Raman and FT-IR spectroscopy and viscometry. The molecular weight of the final product was also measured using static light scattering method. The synthesised polymers were subsequently used in several glass ionomer cement formulations (Fuji II commercial GIC) in which mechanical strength (compressive strength (CS), diametral tensile strength (DTS) and biaxial flexural strength (BFS)) and handling properties (working and setting time) of the resulting cements were evaluated. The polymerisation reaction in sc-CO2/methanol was significantly faster than the corresponding polymerisation reaction in water and the purification procedures were simpler for the former. Furthermore, glass ionomer cement samples made from the terpolymer prepared in sc-CO2/ methanol exhibited higher CS and DTS and comparable BFS compared to the same polymer synthesised in water. The working properties of glass ionomer formulations made in sc-CO2/methanol were comparable and in selected cases better than the values of those made from polymers synthesised in water. © Springer Science+Business Media, LLC 2008.