People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Monteiro, Fj
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Full physicochemical and biocompatibility characterization of a supercritical CO2 sterilized nano-hydroxyapatite/chitosan biodegradable scaffold for periodontal bone regenerationcitations
- 202145S5 Bioglass-Derived Glass-Ceramic Scaffolds Containing Niobium Obtained by Gelcasting Methodcitations
- 2020Femtosecond laser microstructuring of alumina toughened zirconia for surface functionalization of dental implantscitations
- 2019Influence of PLLA/PCL/HA Scaffold Fiber Orientation on Mechanical Properties and Osteoblast Behaviorcitations
- 2019Inhibitory Effect of 5-Aminoimidazole-4-Carbohydrazonamides Derivatives Against Candida spp. Biofilm on Nanohydroxyapatite Substratecitations
- 2018Highly porous 45S5 bioglass-derived glass-ceramic scaffolds by gelcasting of foamscitations
- 2018Micropatterned Silica Films with Nanohydroxyapatite for Y-TZP Implantscitations
- 2016Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regenerationcitations
- 2014Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applicationscitations
- 2014Influence of nanohydroxyapatite surface properties on Staphylococcus epidermidis biofilm formationcitations
- 2012Adhesion of Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa onto nanohydroxyapatite as a bone regeneration materialcitations
- 2008PLD bioactive ceramic films: the influence of CaO-P(2)O(5) glass additions to hydroxyapatite on the proliferation and morphology of osteblastic like-cellscitations
- 2004Production of porus hydroxyapatite with potential for controlled drug delivery
- 2004Porous hydroxyapatite and glass reinforced hydroxyapatite for controlled release of sodium ampicillin
- 2000Microstructural dependence of Young's and shear moduli of P2O5 glass reinforced hydroxyapatite for biomedical applicationscitations
Places of action
Organizations | Location | People |
---|
article
PLD bioactive ceramic films: the influence of CaO-P(2)O(5) glass additions to hydroxyapatite on the proliferation and morphology of osteblastic like-cells
Abstract
This work consists on the evaluation of the in vitro performance of Ti6Al4V samples PLD (pulsed laser deposition) coated with hydroxyapatite, both pure and mixed with a CaO-P(2)O(5) glass. Previous studies on immersion of PLD coatings in SBF, showed that the immersion apatite films did not present the usual cauliflower morphology but replicated the original columnar structure and exhibited good bioactivity. However, the influence of glass associated to hydroxyapatite concerning adhesion, proliferation and morphology of MG63 cells on the films surface was unclear. In this study, the performance of these PLD coated samples was evaluated, not only following the physical-chemical transformations resulting from the SBF immersion, but also evaluating the cytocompatibility in contact with osteoblast-like MG63 cells. SEM and AFM confirmed that the bioactive ceramic PLD films reproduce the substrate's surface topography and that the films presented good adherence and uniform surface roughness. Physical-chemical phenomena occurring during immersion in SBF did not modify the original columnar structure. In contact with MG63 cells, coated samples exhibited very good acceptance and cytocompatibility when compared to control. The glass mixed with hydroxyapatite induced higher cellular proliferation. Cells grown on these samples presented many filipodia and granular structures, typical features of osteoblasts.