Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Charles-Harris, M.

  • Google
  • 2
  • 7
  • 110

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2006Development of a biodegradable composite scaffold for bone tissue engineering89citations
  • 2005Surface characterization of completely degradable composite scaffolds21citations

Places of action

Chart of shared publication
Aparicio, Conrado
2 / 42 shared
Engel, E.
2 / 25 shared
Aparicio, C.
1 / 22 shared
Navarro, M.
2 / 28 shared
Ginebra, M. P.
1 / 6 shared
Planell, J. A.
2 / 93 shared
Ginebra, Mp
2 / 289 shared
Chart of publication period
2006
2005

Co-Authors (by relevance)

  • Aparicio, Conrado
  • Engel, E.
  • Aparicio, C.
  • Navarro, M.
  • Ginebra, M. P.
  • Planell, J. A.
  • Ginebra, Mp
OrganizationsLocationPeople

article

Surface characterization of completely degradable composite scaffolds

  • Aparicio, Conrado
  • Engel, E.
  • Charles-Harris, M.
  • Navarro, M.
  • Planell, J. A.
  • Ginebra, Mp
Abstract

<p>The goal of this study was to characterise the surface properties of completely degradable composite, polylactic acid and calcium phosphate glass, scaffolds. The composite scaffolds are made by solvent casting or phase-separation, using chloroform and dioxane as a solvent respectively. The surface properties were measured on composite films which were made using the same procedure as for the three-dimensional (3D) scaffolds without the pore-creating step. The surface morphology, roughness, wettability and protein adsorption capacity of the films was measured before and after sterilisation with ethylene oxide. The results reveal the influence of solvent type, glass weight content and sterilisation on the wettability, surface energy and protein adsorption capacity of the materials. The addition of glass particles increase the hydrophylicity, roughness and protein adsorption capacity of the surface. This effect, however, depends on the extent of the coating of the glass particles by the polymer film, which is much higher for dioxane films than for chloroform films. This information can be used to interpret and understand the biological behaviour of the 3D scaffolds made of this composite materials.</p>

Topics
  • impedance spectroscopy
  • pore
  • surface
  • polymer
  • phase
  • glass
  • glass
  • composite
  • solvent casting
  • casting
  • Calcium
  • surface energy