People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mansoor, Sana
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Sunlight-active, S-g-C3N4 boosts Ni-doped ZnFe2O4 photocatalysts for efficient organic pollutants degradationcitations
- 2024Fabrication and photocatalytic evaluation of Cr-doped-ZnO/S-g-C3N4 nanocompositecitations
- 2024Fe-doped CdS with sulfonated g-C3N4 in a heterojunction designed for improved biomedical and photocatalytic potentialscitations
- 2024Carbon dots and nitrogen-doped carbon dots-metal oxide nanocomposites
- 2024Harnessing solar power for enhanced photocatalytic degradation of coloured pollutants using novel Mg-doped-ZnFe2O4/S@g-C3N4 heterojunctioncitations
- 2023Fabrication of novel oxochalcogens halides of manganese and tin nanocomposites as highly efficient photocatalysts for dye degradation and excellent antimicrobial activitycitations
- 2023A highly explicit electrochemical biosensor for catechol detection in real samples based on copper-polypyrrolecitations
- 2022Green synthesis of a MnO-GO-Ag nanocomposite using leaf extract of Fagonia arabica and its antioxidant and anti-inflammatory performancecitations
- 2022Controlled growth of nanocomposite thin layer based on Zn-Doped MgO nanoparticles through Sol-Gel technique for biosensor applicationscitations
Places of action
Organizations | Location | People |
---|
article
Fabrication and photocatalytic evaluation of Cr-doped-ZnO/S-g-C3N4 nanocomposite
Abstract
<p>In this study, an effective Cr-ZnO/SGCN photocatalytic composite has been successfully fabricated by coupling chromium-doped zinc oxide nanoparticles (Cr–ZnO NPs) with sulphur-doped graphitic carbon nitride (SGCN) hydrothermally. The effect of various NP and ternary NC compositions on photocatalytic properties was also examined. Using SEM, XRD, EDX and FTIR methods, the samples' morphological, structural, and bonding characteristics were examined while band gaps were determined by employing the tauc plot methodology. Photodegradation of a model contaminant i.e., methylene blue (MB) dye, under sunlight irradiation, was brought into action for determining the photocatalytic capacity of synthetic materials. In order to identify the photocatalyst with the highest photocatalytic efficiency, a two-phase photocatalytic degradation study of (1, 3, 5, 7 & 9) wt.% Cr–ZnO NPs and Cr–ZO/(5, 10, 15 and 20 wt.%) SGCN NCs was conducted against MB. The 5% Cr–ZnO NPs and 5% Cr–ZnO/20% SGCN NCs presented the best optical absorption and photocatalyst effectiveness in stages one and two, respectively. Observed improved photocatalytic performance of Cr–ZnO/20% SGCN NC can be accredited to e–h pair separation and better absorption between SGCN and Cr–ZnO. As a result, the intended study provides good insight for creating a suitable visible-light-driven photocatalyst having useful environmental remediation applications.</p>