People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alshalwi, Matar
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Sunlight-active, S-g-C3N4 boosts Ni-doped ZnFe2O4 photocatalysts for efficient organic pollutants degradationcitations
- 2024A stable metal ferrite Construction, physical Characterizations, and investigation magnetic properties in thin polymer filmscitations
- 2024Engineering the nanostructure of iron-doped ZnO for the construction of Fe-ZnO/SGCN nanocomposites to enhance the spatial charge separation and their potential applicationscitations
- 2024Comparative investigation of tellurium-doped transition metal nanoparticles (Zn, Sn, Mn)citations
- 2024Fabrication and photocatalytic evaluation of Cr-doped-ZnO/S-g-C3N4 nanocompositecitations
- 2024Fe-doped CdS with sulfonated g-C3N4 in a heterojunction designed for improved biomedical and photocatalytic potentialscitations
- 2024High-strength montmorillonite polyurethane nanocomposites with exfoliated montmorillonitecitations
- 2024Carbon dots and nitrogen-doped carbon dots-metal oxide nanocomposites
- 2024Zinc‐based metal–organic frameworks for encapsulation and sustained release of ciprofloxacin for excellent antibacterial activitiescitations
- 2024Harnessing solar power for enhanced photocatalytic degradation of coloured pollutants using novel Mg-doped-ZnFe2O4/S@g-C3N4 heterojunctioncitations
- 2024Boosting highly effective photocatalytic activity through g-C3N4 coupled Al doped zinc ferrite nanoparticlescitations
- 2024Highly synergistic antibacterial activity of copper (II)-based nano metal–organic frameworkcitations
- 2023Electrochemical Studies of Nanoflakes like ZnMnO<sub>3</sub> Perovskites for the Determination of Priority Organic Pollutant N-hydroxysuccinimidecitations
Places of action
Organizations | Location | People |
---|
article
Carbon dots and nitrogen-doped carbon dots-metal oxide nanocomposites
Abstract
<p>Carbon dots-Manganese oxide (CDs-MnO<sub>2</sub>) and Nitrogen-doped carbon dots-MnO<sub>2</sub> (NCDs-MnO<sub>2</sub>) nanocomposites were constructed by a green ultrasonic approach using Jasminum sambac leaves extract as a carbon source and reducing agent. The constructed nanocomposites were characterized by UV–visible spectrophotometry, FTIR, XRD, EDX, and SEM. CDs-MnO<sub>2</sub> nanocomposites gave a UV–visible absorbance peak at λ<sub>max</sub> 223 nm and NCDs-MnO<sub>2</sub> nanocomposite showed a peak at λ<sub>max</sub> 225 nm. FTIR examination revealed that the produced nanocomposites included a variety of functional groups. The size of the nanocomposite was calculated from XRD data i.e. 22.04 nm for CDs-MnO<sub>2</sub> while NCDs-MnO<sub>2</sub> had an amorphous nature. EDX analysis showed that both nanocomposites have C, O, and Mn while only one nanocomposite has N. SEM investigation revealed that nanocomposites are agglomerated. The spectrophotometric method was used for the sensitive and selective perceiving of Cr(VI) ions using prepared nanocomposites. Different factors were studied to find an optimum environment for sensing Cr (VI) ions i.e. concentration of ions, reaction time, pH, temperature, and effect of interfering species. The calculated limit of detection was 16 μM for CDs-MnO<sub>2</sub> and 69 μM for NCDs-MnO<sub>2</sub>. The results showed that both nanocomposites are good sensors of Cr (VI) ions but NCDs-MnO<sub>2</sub> nanocomposites require less harsh conditions for sensing which can be due to the existence of different functional groups and size of the nanocomposite. Real sample analysis was also done by spike recovery method and calculated recovery percentages were found to be 100.01–100.2% for CDs-MnO<sub>2</sub> and 99.9–100.01% for NCDs-MnO<sub>2</sub>.</p>