Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ashok, Anuradha M.

  • Google
  • 1
  • 5
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Incorporation of copper in LaCoO3: modulating thermoelectric power factor for low- and mid-temperature thermoelectric applications3citations

Places of action

Chart of shared publication
Mukherjee, Bodhoday
1 / 2 shared
Rao, Ashok
1 / 3 shared
Poornesh, P.
1 / 4 shared
Okram, Gunadhor Singh
1 / 2 shared
Deepika Shanubhogue, U.
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Mukherjee, Bodhoday
  • Rao, Ashok
  • Poornesh, P.
  • Okram, Gunadhor Singh
  • Deepika Shanubhogue, U.
OrganizationsLocationPeople

article

Incorporation of copper in LaCoO3: modulating thermoelectric power factor for low- and mid-temperature thermoelectric applications

  • Ashok, Anuradha M.
  • Mukherjee, Bodhoday
  • Rao, Ashok
  • Poornesh, P.
  • Okram, Gunadhor Singh
  • Deepika Shanubhogue, U.
Abstract

<jats:title>Abstract</jats:title><jats:p>In the present work, LaCoO<jats:sub>3</jats:sub>/ <jats:italic>x</jats:italic> wt% Cu (<jats:italic>x</jats:italic> = 0%, 5%, 10%, 15%, and 20%) samples were prepared using solid-state reaction method followed by conventional sintering. We have performed electrical and thermoelectric (TE) measurements on these samples both at low (100–310 K) as well as in mid (310–790 K) temperature range. X-ray diffraction (XRD) studies showed that the pristine LaCoO<jats:sub>3</jats:sub> sample crystallized in a distorted rhombohedral structure with the space group <jats:inline-formula><jats:alternatives><jats:tex-math>R{-}{3}c</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>R</mml:mi><mml:mover><mml:mn>3</mml:mn><mml:mo>-</mml:mo></mml:mover><mml:mi>c</mml:mi></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>. Interestingly, the addition of Cu resulted in two distinct phases viz. rhombohedral LaCoO<jats:sub>3</jats:sub> and monoclinic CuO. Throughout the entire temperature range, the electrical resistivity of the samples decreased with temperature, which depicts the semiconducting behavior of the prepared samples. Furthermore, there is a crossover from negative to positive Seebeck coefficient for the pristine sample at 275 K, but all the copper-incorporated samples exhibited a positive Seebeck coefficient indicating holes as the majority charge carriers. It is found that, the sample with <jats:italic>x</jats:italic> = 10% exhibited the maximum power factor of about 99 µW/m K<jats:sup>2</jats:sup> at 400 K, which is significantly higher than the pristine sample at the same temperature.</jats:p>

Topics
  • impedance spectroscopy
  • resistivity
  • phase
  • x-ray diffraction
  • copper
  • sintering
  • space group