People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bhat, T. R. Kishore
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Annealing-induced phase conversion on spray pyrolyzed cubic-SnS thin films
Abstract
<jats:title>Abstract</jats:title><jats:p>The cubic-tin sulfide (SnS) compound material is optimal for the absorber layer in photovoltaic technology. In this study, the role of annealing temperature on the physical properties of cubic-SnS thin film has been determined. The spray pyrolyzed SnS thin films were post-annealed, using the chemical vapor deposition system, at the temperature range between 350 and 500 °C The annealed films have been analyzed using a comprehensive range of characterization techniques i.e., X-ray diffraction (XRD), Raman spectroscopy, UV–Vis spectroscopy, Photoluminescence spectroscopy (PL), Field-emission scanning electron microscopy (FESEM), Energy dispersive spectroscopy (EDS) and Hall measurements. The XRD results discovered the phase deterioration of cubic-SnS at higher annealing temperatures i.e., > 350 °C. Further, the Raman analysis confirmed the cubic-SnS phase deterioration, along with the formation of SnS<jats:sub>2</jats:sub> and Sn<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> secondary phases, at higher annealing temperatures. Besides that, a band gap in the range of 1.63–1.68 eV has been obtained for the SnS thin films. The films exhibit the near-band edge emission peak in the PL spectra. Moreover, the SEM micrographs show the needle-shaped grains, and their size and distribution were increased with respect to the enhancement in annealing temperature. A considerable amount of sulfur inclusion was observed in EDS analysis and the films annealed at 450° exhibit the near stoichiometric composition ratio of Sn/S = 1.01. The hall measurement studies showed resistivity, carrier concentration, and mobility of 29.4–376.5 Ω cm, 4.2 × 10<jats:sup>14</jats:sup>–3.0 × 10<jats:sup>16</jats:sup> cm<jats:sup>−3</jats:sup> and 13.1–66.1 cm<jats:sup>2</jats:sup>/Vs, respectively.</jats:p>