Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Omoniyi, O. A.

  • Google
  • 4
  • 9
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022Synergy of PMN-PT with piezoelectric polymer using sugar casting method for sensing applications3citations
  • 2021Fabrication and characterization of a novel photoactive based (0-3) piezocomposite material with potential as a functional material for additive manufacturing of piezoelectric sensors2citations
  • 2020Characterization of (0-3) piezocomposite materials for transducer applications1citations
  • 2019Developing a 3D printable electret material for sensing applicationscitations

Places of action

Chart of shared publication
Windmill, James
4 / 19 shared
Mansour, R.
3 / 4 shared
Reid, A.
1 / 5 shared
Stewart, B. G.
1 / 1 shared
Brindley, W.
1 / 1 shared
Cardona, Milovan Joe
2 / 3 shared
Oleary, Richard
3 / 26 shared
Briuglia, Maria Lucia
2 / 4 shared
Tiller, B.
1 / 4 shared
Chart of publication period
2022
2021
2020
2019

Co-Authors (by relevance)

  • Windmill, James
  • Mansour, R.
  • Reid, A.
  • Stewart, B. G.
  • Brindley, W.
  • Cardona, Milovan Joe
  • Oleary, Richard
  • Briuglia, Maria Lucia
  • Tiller, B.
OrganizationsLocationPeople

article

Fabrication and characterization of a novel photoactive based (0-3) piezocomposite material with potential as a functional material for additive manufacturing of piezoelectric sensors

  • Windmill, James
  • Cardona, Milovan Joe
  • Oleary, Richard
  • Mansour, R.
  • Briuglia, Maria Lucia
  • Omoniyi, O. A.
Abstract

The development of 3D-printed sensors and actuators from piezocomposite materials has increased in recent years due to the ease of production, low-cost and improved functionality additive manufacturing provides. The piezocomposite material developed in this work has the potential to be used as a functional material in stereolithographic additive manufacturing by combining the optical, viscoelastic properties of NOA 65 and the piezoelectric properties of Barium Titanate. The new (0-3) piezocomposite material consists of Norland Optical Adhesive 65 (NOA 65) as the polymer matrix and Barium Titanate (BaTiO3) with particles sizes (100 nm, 200 nm and 500 nm) as the dielectric filler. We synthesized thin film samples of the (0-3) piezocomposite with 60% w/w BaTiO3 using solution mixing and spin coating method to produce samples with layer thickness of 100 μm. Fourier-transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM) techniques were used to analyze the microstructure of the piezocomposite to determine the effect of different particles sizes of BaTiO3 on the structural and mechanical properties of the composite. The longitudinal piezoelectric coefficient d33 was also measured using the laser vibrometer technique. Both single point scans and full surface scans were carried out to obtain the average piezoelectric coefficient d33 of the composite material. The results of the SEM confirmed the (0-3) structure of the piezocomposite material with isolated BaTiO3 nanoparticles. It further showed the uniform distribution of the BaTiO3 nanoparticles across each of the samples. FTIR analysis showed that the filler nanoparticles had no effect on the native structure of the polymer matrix. The longitudinal piezoelectric coefficient d33 of the piezocomposite material was observed to increase with increasing BaTiO3 particle sizes, while the indentation modulus of the composite investigated using the method of Oliver and Pharr was observed to decrease with an increase in particle size. Results from the single point scans showed the composite with BaTiO3 particle size 100 nm, 200 nm and 500 nm having an average d33 of 2.1 pm/V, 3.0 pm/V and 3.9 pm/V while the average d33 obtained from the full surface scan of 1430 scan points showed 1.4 pm/V, 6.1 pm/V, 7.2 pm/V.

Topics
  • nanoparticle
  • microstructure
  • surface
  • polymer
  • scanning electron microscopy
  • thin film
  • composite
  • additive manufacturing
  • infrared spectroscopy
  • Barium
  • spin coating