Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ahmad, Madiha

  • Google
  • 1
  • 8
  • 132

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Controlled synthesis of Ag-doped CuO nanoparticles as a core with poly(acrylic acid) microgel shell for efficient removal of methylene blue under visible light132citations

Places of action

Chart of shared publication
Raheel, Muhammad
1 / 5 shared
Shoaib, Muhammad
1 / 12 shared
Li, Hao
1 / 3 shared
Javed, Mohsin
1 / 48 shared
Qamar, Muhammad Azam
1 / 17 shared
Ahmad, Naveed
1 / 11 shared
Bahadur, Ali
1 / 43 shared
Akbar, Muhammad Bilal
1 / 4 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Raheel, Muhammad
  • Shoaib, Muhammad
  • Li, Hao
  • Javed, Mohsin
  • Qamar, Muhammad Azam
  • Ahmad, Naveed
  • Bahadur, Ali
  • Akbar, Muhammad Bilal
OrganizationsLocationPeople

article

Controlled synthesis of Ag-doped CuO nanoparticles as a core with poly(acrylic acid) microgel shell for efficient removal of methylene blue under visible light

  • Raheel, Muhammad
  • Shoaib, Muhammad
  • Li, Hao
  • Javed, Mohsin
  • Qamar, Muhammad Azam
  • Ahmad, Naveed
  • Bahadur, Ali
  • Akbar, Muhammad Bilal
  • Ahmad, Madiha
Abstract

<p>Nowadays, constructing a narrow bandgap nanocomposite photocatalyst that can degrade contamination under visible light is critical but challenging. In this report, poly (acrylic acid) microgel (PAA) based nanocomposites (Ag@CuO/PAA NC) were constructed via free radical solution polymerization by varying the concentration of silver-doped copper oxide nanoparticles (Ag@CuO NPs) from 0 to 12%. As prepared Ag@CuO and Ag@CuO/PAA were characterized by X‐ray diffraction spectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray and X-ray photoelectron spectroscopy. The size of Ag@CuO NPs was found to be 30–50 nm. The photocatalytic activity of CuO is increased by Ag doping and C3 NPs show the best photodegradation of methylene blue (MB). Then, 4% of Ag@CuO nanoparticles were incorporated into PAA microgel, the resultant nanocomposite showed a drastic increase in photodegradation of MB. Ag@CuO/PAA NC completely degraded dye in only 30 min which was degraded up to 65% in 60 min. by Ag@CuO NPs. The successful combination of PAA with Ag@CuO boosts the photocatalytic activity because microgel provides a large surface to adsorb pollutants. Ag@CuO/PAA NC reused successfully for photodegradation of dye due to the recycling ability of microgels. This study gives a good insight into planning a significant visible‐light‐driven photocatalyst for environmental remediation.</p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • surface
  • silver
  • scanning electron microscopy
  • x-ray photoelectron spectroscopy
  • transmission electron microscopy
  • copper