People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Martin, Phil
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2020Advanced RuO2 Thin Films for pH Sensing Applicationcitations
- 2018Fabrication of nitrogen-containing diamond-like carbon film by filtered arc deposition as conductive hard-coating filmcitations
- 2018Tuning the Plasmonic Response of TiN Nanoparticles Synthesised by the Transferred Arc Plasma Techniquecitations
- 2018Fabrication of sputtered titanium vanadium nitride (TiVN) thin films for micro-supercapacitorscitations
- 2018Cytocompatible tantalum films on Ti6Al4V substrate by filtered cathodic vacuum arc depositioncitations
- 2017Biomineralisation with Saos-2 bone cells on TiSiN sputtered Ti alloyscitations
- 2016Fabrication of Semiordered Nanopatterned Diamond-like Carbon and Titania Films for Blood Contacting Applicationscitations
- 2011Mechanical properties and scratch resistance of filtered-arc-deposited titanium oxide thin films on glasscitations
- 2011A review of high throughput and combinatorial electrochemistrycitations
- 2010Multilayered coatings: tuneable protection for metalscitations
Places of action
Organizations | Location | People |
---|
article
Fabrication of sputtered titanium vanadium nitride (TiVN) thin films for micro-supercapacitors
Abstract
In the present work, we have demonstrated the micro-supercapacitor behavior of titanium vanadium nitride thin films fabricated on stainless steel substrates by a pulsed DC magnetron sputtering technique. The microstructural characterization from X-ray diffraction (XRD) reveals the FCC structure of TiVN thin films with a preferred (200) orientation. A faceted morphology with square-edge shaped dense grains of the thin films is observed from field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images. Ion scattering spectroscopy (ISS) and X-ray photoelectron spectroscopy (XPS) was used to determine the surface compositions and confirmed the absence of impurities. The specific capacitance (Csp) of the electrode material was evaluated by cyclic voltammetry (CV). Galvanostatic charge–discharge (CD) test and the electrochemical impedance spectroscopy (EIS) measurements were also performed. The electrochemical result of fabricated TiVN displays a supercapacitive behavior. A maximum Csp of 69 F/g (volumetric capacitance of 155.94 F/cm3) is obtained from both CV and CD studies. The experimental results reveal that the sputtered TiVN thin films area promising electrode material for electrochemical micro-supercapacitors.