People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kim, Hak Yong
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2016Photoluminescent and transparent Nylon-6 nanofiber mat composited by CdSe@ZnS quantum dots and poly (methyl methacrylate)citations
- 2016Nano-designed λ-CaCO3@rGO photo-catalyst for effective adsorption and simultaneous removal of organic pollutantcitations
- 2016Supercapacitors based on ternary nanocomposite of TiO2&Pt@graphenescitations
- 2016Nano-engineered ZnO/CeO2 dots@CNFs for fuel cell applicationcitations
- 2015Synthesis and characterization of Nitrogen-doped &CaCO3-decorated reduced graphene oxide nanocomposite for electrochemical supercapacitorscitations
- 2015Effective photocatalytic efficacy of hydrothermally synthesized silver phosphate decorated titanium dioxide nanocomposite fiberscitations
- 2014Co/CeO2-decorated carbon nanofibers as effective non-precious electro-catalyst for fuel cells application in alkaline mediumcitations
Places of action
Organizations | Location | People |
---|
article
Supercapacitors based on ternary nanocomposite of TiO2&Pt@graphenes
Abstract
The electrochemical properties of graphene can be significantly enhanced due to the incorporating of hetero-atoms into the graphene. In this article Crumpled-like TiO2–Pt/graphene nanocomposite from graphene oxide (GO), titanium (III) chloride (TiCl3) and Hydrogen hexa chloro palatinate (H2PtCl6) was synthesized via a simple reflux strategy and employed as a simple capacitor electrode material. The nanocomposite was characterized by XRD, XPS, FESEM, HRTEM and the electrochemical properties were investigated by cyclic voltammetry (CV). Electrochemical characterization for introduced nanocomposite indicated that the corresponding specific capacitance is 160 F/g (at 5 mV/s) with good stability. The high electrochemical performance is recognized to the presence of Pt nanoparticles on the nanocomposite and graphene distinct characteristics. To the best of our knowledge this is the first report on TiO2–Pt/graphene nanocomposite as an electrical double layer capacitor material.