Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Steenberge, N. Van

  • Google
  • 2
  • 4
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Strengthening effect of NiAl and Ni3Ti precipitates in Co-free maraging steels13citations
  • 2022The role of alloying elements in NiAl and Ni3Ti strengthened Co-free maraging steels12citations

Places of action

Chart of shared publication
Zeisl, Stefan
2 / 4 shared
Schnitzer, Ronald
2 / 59 shared
Chang, Y.
1 / 13 shared
Landefeld, Andreas
1 / 8 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Zeisl, Stefan
  • Schnitzer, Ronald
  • Chang, Y.
  • Landefeld, Andreas
OrganizationsLocationPeople

article

Strengthening effect of NiAl and Ni3Ti precipitates in Co-free maraging steels

  • Zeisl, Stefan
  • Steenberge, N. Van
  • Schnitzer, Ronald
Abstract

One class of maraging steels are strengthened by a combination of β-NiAl and η-Ni3Ti intermetallic phases which are precipitated during an aging heat treatment. To establish a meaningful structure-property relationship the precipitation strengthening effect from each phase must be isolated from the other strengthening mechanisms. To achieve this, a series of model alloys based on the Fe-12Ni alloy system were aged and characterized to determine the precipitation strengthening effect. In the course of this study, using a new approach, atom probe tomography was used to determine the spacing between precipitates and to calculate the individual strength contribution of the β and the η phase using a model describing the precipitate-dislocation interactions. It was found that the precipitation strengthening of the combined β and η phases is close to 1000 MPa and that the relative strengthening effect of each phase is sensitive to the Ti and Al concentration.

Topics
  • impedance spectroscopy
  • phase
  • strength
  • steel
  • dislocation
  • precipitate
  • precipitation
  • aging
  • intermetallic
  • aging
  • atom probe tomography