Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lin, Weikang

  • Google
  • 1
  • 4
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Effect of Cr:Fe ratio on the mechanical properties of (Cr,Fe)7C3 ternary carbides in abrasion-resistant white cast irons11citations

Places of action

Chart of shared publication
Ali, Yahia
1 / 4 shared
Gates, J. D.
1 / 1 shared
Jokari-Sheshdeh, Maziar
1 / 1 shared
Gallo, Santiago Corujeira
1 / 5 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Ali, Yahia
  • Gates, J. D.
  • Jokari-Sheshdeh, Maziar
  • Gallo, Santiago Corujeira
OrganizationsLocationPeople

article

Effect of Cr:Fe ratio on the mechanical properties of (Cr,Fe)7C3 ternary carbides in abrasion-resistant white cast irons

  • Ali, Yahia
  • Lin, Weikang
  • Gates, J. D.
  • Jokari-Sheshdeh, Maziar
  • Gallo, Santiago Corujeira
Abstract

<jats:title>Abstract</jats:title><jats:p>(Cr,Fe)<jats:sub>7</jats:sub>C<jats:sub>3</jats:sub> ternary carbides constitute the majority of eutectic carbides in abrasion-resistant white cast irons. Density functional theory models have predicted these carbides to have a combination of metallic, covalent and ionic bonding, in proportions depending on the carbide’s Cr:Fe ratio. However, experimental research to validate these predictions has been lacking. This study investigates the characteristics of the carbides as a function of Cr:Fe ratio, which was manipulated from Fe-rich to Cr-rich by varying the Cr:C ratio of the bulk alloy. The carbides’ crystalline structure, hardness, Young’s modulus, fracture toughness and abrasion performance have been assessed through techniques including nano-indentation, HR-TEM and the inner circumference abrasion test (ICAT). Fe-rich M<jats:sub>3</jats:sub>C formed at very low bulk Cr:C ratio was found to have an orthorhombic crystal structure. In all other alloys, with Cr:C ratios above 2.7, M<jats:sub>7</jats:sub>C<jats:sub>3</jats:sub> was formed and found to have a hexagonal structure. Hardness, Young’s modulus and calculated fracture toughness of M<jats:sub>7</jats:sub>C<jats:sub>3</jats:sub> all increase with Cr:Fe ratio, from (Fe<jats:sub>5</jats:sub>,Cr<jats:sub>2</jats:sub>)C<jats:sub>3</jats:sub> up to a maximum for (Cr<jats:sub>4</jats:sub>,Fe<jats:sub>3</jats:sub>)C<jats:sub>3</jats:sub> (in 18Cr–6.8Cr:C WCI). This gave the highest hardness (22.9 GPa) and Young’s modulus (315 GPa), but also the highest fracture toughness (4.5 MPa.m0.5). The peak fracture toughness at carbide composition of (Cr<jats:sub>4</jats:sub>,Fe<jats:sub>3</jats:sub>)C<jats:sub>3</jats:sub> in this study is consistent with the prediction of DFT models in the literature; while the peak hardness at the same carbide composition shows a marginal deviation from the predictions. Abrasion performance generally increased with carbide hardness and fracture toughness, with one exception: (Cr<jats:sub>4.3</jats:sub>,Fe<jats:sub>2.7</jats:sub>)C<jats:sub>3</jats:sub>. Although (Cr<jats:sub>4.3</jats:sub>,Fe<jats:sub>2.7</jats:sub>)C<jats:sub>3</jats:sub> showed marginally lower inherent fracture toughness than (Cr<jats:sub>4.0</jats:sub>,Fe<jats:sub>3.0</jats:sub>)C<jats:sub>3</jats:sub>, the higher Cr:Fe carbides imparted the highest abrasion performance, associated with modified eutectic morphology.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • morphology
  • theory
  • carbide
  • hardness
  • transmission electron microscopy
  • density functional theory
  • iron
  • fracture toughness
  • white cast iron