Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bertolo, Virgínia

  • Google
  • 2
  • 9
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022A comprehensive quantitative characterisation of the multiphase microstructure of a thick-section high strength steel16citations
  • 2022Cleavage fracture micromechanisms in thick-section quenched and tempered S690 high-strength steels8citations

Places of action

Chart of shared publication
Walters, Carey
1 / 3 shared
Sietsma, Jilt
2 / 44 shared
Popovich, Vera
2 / 27 shared
Scholl, Sebastian
1 / 4 shared
Jiang, Quanxin
2 / 17 shared
Petrov, Roumen
1 / 71 shared
Hangen, Ude
1 / 2 shared
Walters, Carey L.
1 / 6 shared
Tiringer, Ursa
1 / 3 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Walters, Carey
  • Sietsma, Jilt
  • Popovich, Vera
  • Scholl, Sebastian
  • Jiang, Quanxin
  • Petrov, Roumen
  • Hangen, Ude
  • Walters, Carey L.
  • Tiringer, Ursa
OrganizationsLocationPeople

article

Cleavage fracture micromechanisms in thick-section quenched and tempered S690 high-strength steels

  • Walters, Carey L.
  • Sietsma, Jilt
  • Bertolo, Virgínia
  • Popovich, Vera
  • Jiang, Quanxin
  • Tiringer, Ursa
Abstract

<p>For structural assessment and optimal design of thick-section high-strength steels in applications under harsh service conditions, it is essential to understand the cleavage fracture micromechanisms. In this study, we assess the effects of through-thickness microstructure of an 80-mm-thick quenched and tempered S690 high-strength steel, notch orientation, and crack tip constraint in cleavage nucleation and propagation via sub-sized crack tip opening displacement (CTOD) testing at −100 °C. The notch was placed parallel and perpendicular to the rolling direction, and the crack tip constraint was analysed by varying the a/W ratio: 0.5, 0.25, and 0.1. The notch orientation does not play a role, and the material is considered isotropic in-plane. Nb-rich inclusions were observed to act as the weak microstructural link in the steel, triggering fracture in specimens with the lowest CTOD values. While shallow-cracked specimens from the top section present larger critical CTOD values than deep-cracked ones due to stress relief ahead of the crack tip, the constraint does not have a significant influence in the middle due to the very detrimental microstructure in the presence of Nb-rich inclusions. Some specimens show areas of intergranular fracture due to the combined effect of C, Cr, Mn, Ni, and P segregation along with precipitation of Nb-rich inclusions clusters on the grain boundaries. Several crack deflections at high-angle grain boundaries were observed where the neighbouring sub-structure has different Bain axes.</p>

Topics
  • impedance spectroscopy
  • cluster
  • grain
  • inclusion
  • crack
  • strength
  • steel
  • precipitation
  • isotropic