Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kankanamge, Udesh M. H. U.

  • Google
  • 1
  • 3
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Machine learning guided alloy design of high-temperature NiTiHf shape memory alloys25citations

Places of action

Chart of shared publication
Xu, Wei
1 / 11 shared
Gallo, Santiago Corujeira
1 / 5 shared
Ma, Xingjun
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Xu, Wei
  • Gallo, Santiago Corujeira
  • Ma, Xingjun
OrganizationsLocationPeople

article

Machine learning guided alloy design of high-temperature NiTiHf shape memory alloys

  • Xu, Wei
  • Gallo, Santiago Corujeira
  • Ma, Xingjun
  • Kankanamge, Udesh M. H. U.
Abstract

<jats:title>Abstract</jats:title><jats:p>With the increasing use of CubeSats in space exploration, the demand for reliable high-temperature shape memory alloys (HTSMA) continues to grow. A wide range of HTSMAs has been investigated over the past decade but finding suitable alloys by means of trial-and-error experiments is cumbersome and time-consuming. The present work uses a data-driven approach to identify NiTiHf alloys suitable for actuator applications in space. Seven machine learning (ML) models were evaluated, and the best fit model was selected to identify new alloy compositions with targeted transformation temperature (Ms), thermal hysteresis, and work output. Of the studied models, the K-nearest neighbouring ML model offers more reliable and accurate prediction in developing NiTiHf alloys with balanced functional properties and aids our existing understanding on compositional dependence of transformation temperature, thermal hysteresis and work output. For instance, the transformation temperature of NiTiHf alloys is more sensitive to Ni variation with increasing Hf content. A maximum Ms reduction rate of 6.12 °C per 0.01 at.% Ni is attained at 30 at.% Hf, and with a Ni content between 50 and 51 at.%.</jats:p><jats:p><jats:bold>Graphical abstract</jats:bold></jats:p>

Topics
  • impedance spectroscopy
  • experiment
  • mass spectrometry
  • machine learning
  • alloy composition