Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bertolo, Virgínia

  • Google
  • 2
  • 9
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022A comprehensive quantitative characterisation of the multiphase microstructure of a thick-section high strength steel16citations
  • 2022Cleavage fracture micromechanisms in thick-section quenched and tempered S690 high-strength steels8citations

Places of action

Chart of shared publication
Walters, Carey
1 / 3 shared
Sietsma, Jilt
2 / 44 shared
Popovich, Vera
2 / 27 shared
Scholl, Sebastian
1 / 4 shared
Jiang, Quanxin
2 / 17 shared
Petrov, Roumen
1 / 71 shared
Hangen, Ude
1 / 2 shared
Walters, Carey L.
1 / 6 shared
Tiringer, Ursa
1 / 3 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Walters, Carey
  • Sietsma, Jilt
  • Popovich, Vera
  • Scholl, Sebastian
  • Jiang, Quanxin
  • Petrov, Roumen
  • Hangen, Ude
  • Walters, Carey L.
  • Tiringer, Ursa
OrganizationsLocationPeople

article

A comprehensive quantitative characterisation of the multiphase microstructure of a thick-section high strength steel

  • Walters, Carey
  • Sietsma, Jilt
  • Bertolo, Virgínia
  • Popovich, Vera
  • Scholl, Sebastian
  • Jiang, Quanxin
  • Petrov, Roumen
  • Hangen, Ude
Abstract

<p>The through-thickness heterogeneous microstructure of thick-section high strength steels is responsible for the significant scatter of properties along the thickness. In this study, in order to identify the critical microstructural features in the fracture behaviour and allow for design optimisation and prediction of structural failure, the through-thickness microstructure of thick-section steels was extensively characterised and quantified. For this purpose, samples were extracted from the top quarter and middle thickness positions, and a combination of techniques including chemical composition analysis, dilatometry, and microscopy was used. The hardness variation through the thickness was analysed via micro-Vickers measurements and the local hardness variation in the middle section was studied via nanoindentation. The middle section presented larger prior austenite grain (PAG) sizes and larger sizes and area fraction of inclusions than the top section. Additionally, cubic inclusions were observed distributed as clusters in the middle, sometimes decorating PAG boundaries. Defects associated with the cubic inclusions or the interface between the matrix and the circular and cubic inclusions were observed in the mid-thickness. Moreover, the middle section presented long interfaces with the most significant hardness gradients due to the presence of hard centreline segregation bands. Hence, the microstructural and nanoindentation analyses indicated the middle section as the most likely area to have the lowest fracture toughness and, therefore, the most unfavourable section for fracture performance of the investigated S690QL high strength steel. The detrimental effect of the middle section was confirmed via CTOD tests where the middle presents lower fracture toughness than the top section.</p>

Topics
  • impedance spectroscopy
  • cluster
  • grain
  • inclusion
  • strength
  • steel
  • hardness
  • nanoindentation
  • chemical composition
  • fracture toughness
  • microscopy
  • dilatometry