Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Watanabe, Masahito

  • Google
  • 1
  • 3
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Interfacial phenomena between molten iron and molten slag–Effect of nitrogen on the Marangoni convection12citations

Places of action

Chart of shared publication
Belov, Ilja
1 / 1 shared
Matsushita, Taishi
1 / 14 shared
Jarfors, Anders E. W.
1 / 26 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Belov, Ilja
  • Matsushita, Taishi
  • Jarfors, Anders E. W.
OrganizationsLocationPeople

article

Interfacial phenomena between molten iron and molten slag–Effect of nitrogen on the Marangoni convection

  • Belov, Ilja
  • Watanabe, Masahito
  • Matsushita, Taishi
  • Jarfors, Anders E. W.
Abstract

<jats:sec><jats:title>Abstract</jats:title><jats:p>In order to investigate the influence of the surface-active element on the interfacial phenomena between molten iron and molten Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>-CaO-SiO<jats:sub>2</jats:sub> slag, a mildly surface-active element, nitrogen, was introduced, and the interfacial phenomena were directly observed using an X-ray sessile drop method. The multiphysics model was employed to calculate the velocity of the Marangoni convection caused by the surface/interfacial tension gradient along with the contour of the sessile drop. Movement of the sessile drop was observed in the experiment, and the driving force of the movement was discussed from the distribution of surface tension active element viewpoint. The calculated velocity of the Marangoni convection in the droplet was reasonably agreed with the literature data for the metal-gas system, and thus, the same model was applied for the metal-slag system. The velocity of the Marangoni convection for the metal-slag system becomes ten times lower compared to that of metal-gas system.</jats:p></jats:sec><jats:sec><jats:title>Graphical abstract</jats:title></jats:sec>

Topics
  • surface
  • experiment
  • Nitrogen
  • iron
  • size-exclusion chromatography