People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Topolski, Krzysztof
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2020High-strength ultrafine-grained titanium 99.99 manufactured by large strain plastic workingcitations
- 2020A Novel Rolling Approach to Refining the Microstructure and Enhancing the Mechanical Strength of Pure Aluminiumcitations
- 2020Biological properties of a novel β-Ti alloy with a low young’s modulus subjected to cold rollingcitations
- 2019Functional properties of the novel hybrid coatings combined of the oxide and DLC layer as a protective coating for AZ91E magnesium alloycitations
- 2012High cycle fatigue strength of hydrostatically extruded nanocrystalline CP titanium
Places of action
Organizations | Location | People |
---|
article
High-strength ultrafine-grained titanium 99.99 manufactured by large strain plastic working
Abstract
<p>In this research, high-purity titanium (hp-Ti, 99.99 wt%) was subjected to a large strain via a cold plastic working process. To accumulate a relatively large plastic deformation in the workpiece, the hydrostatic extrusion (HE) technique was applied. The initial rod with a diameter of ∅50 mm was subjected to a multi-pass extrusion process, and, this way, rods with a diameter of ∅8 mm and ∅7 mm were obtained. In this paper, the results of an investigation of the structure and mechanical properties of the hp-Ti are presented. The size and shape of the grains of the as-received and extruded samples were examined, and an effective way of refining grain and strengthening hp-Ti using plastic working was demonstrated. Thanks to the process applied, an ultrafine-grained structure was obtained. In the transverse section, the average grain size determined by transmission electron microscopy was 117 nm on average. As a result of the extrusion, a significant increase in yield stress, tensile strength and microhardness was observed. Moreover, in this paper the overall potential of the HE technique was demonstrated. The results of this work confirm that it is possible to manufacture high-strength, ultrafine-grained high-purity titanium via cold plastic working.</p>