Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ene, Vladimir-Lucian

  • Google
  • 1
  • 8
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Formation mechanism and thermoelectric properties of CaMnO3 thin films synthesized by annealing of Ca0.5Mn0.5O films12citations

Places of action

Chart of shared publication
Paul, Biplab
1 / 20 shared
Eriksson, Fredrik
1 / 29 shared
Fournier, Daniele
1 / 7 shared
Lu, Jun
1 / 78 shared
Van Nong, Ngo
1 / 50 shared
Eklund, Per
1 / 131 shared
Febvrier, Arnaud Le
1 / 5 shared
Ekström, Erik
1 / 9 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Paul, Biplab
  • Eriksson, Fredrik
  • Fournier, Daniele
  • Lu, Jun
  • Van Nong, Ngo
  • Eklund, Per
  • Febvrier, Arnaud Le
  • Ekström, Erik
OrganizationsLocationPeople

article

Formation mechanism and thermoelectric properties of CaMnO3 thin films synthesized by annealing of Ca0.5Mn0.5O films

  • Paul, Biplab
  • Eriksson, Fredrik
  • Fournier, Daniele
  • Lu, Jun
  • Van Nong, Ngo
  • Eklund, Per
  • Ene, Vladimir-Lucian
  • Febvrier, Arnaud Le
  • Ekström, Erik
Abstract

A two-step synthesis approach was utilized to grow CaMnO3 on M-, R- and C-plane sapphire substrates. Radio-frequency reactive magnetron sputtering was used to grow rock-salt-structured (Ca, Mn)O followed by a 3-h annealing step at 800 °C in oxygen flow to form the distorted perovskite phase CaMnO3. The effect of temperature in the post-annealing step was investigated using x-ray diffraction. The phase transformation to CaMnO3 started at 450 °C and was completed at 550 °C. Films grown on R- and C-plane sapphire showed similar structure with a mixed orientation, whereas the film grown on M-plane sapphire was epitaxially grown with an out-of-plane orientation in the [202] direction. The thermoelectric characterization showed that the film grown on M-plane sapphire has about 3.5 times lower resistivity compared to the other films with a resistivity of 0.077 Ωcm at 500 °C. The difference in resistivity is a result from difference in crystal structure, single orientation for M-plane sapphire compared to mixed for R- and C-plane sapphire. The highest absolute Seebeck coefficient value is − 350 µV K−1 for all films and is decreasing with temperature.

Topics
  • perovskite
  • impedance spectroscopy
  • resistivity
  • phase
  • x-ray diffraction
  • thin film
  • Oxygen
  • reactive
  • annealing