Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Oliveira, Ff

  • Google
  • 1
  • 3
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Electrodeposition of ZnO thin films on conducting flexible substrates23citations

Places of action

Chart of shared publication
Proenca, Mp
1 / 8 shared
Araujo, Jp
1 / 91 shared
Ventura, Joao
1 / 38 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Proenca, Mp
  • Araujo, Jp
  • Ventura, Joao
OrganizationsLocationPeople

article

Electrodeposition of ZnO thin films on conducting flexible substrates

  • Proenca, Mp
  • Araujo, Jp
  • Ventura, Joao
  • Oliveira, Ff
Abstract

In this work, we studied the DC electrochemical deposition of zinc oxide (ZnO) thin films on a conducting and flexible substrate, for their application in energy harvesting piezoelectric nanodevices. The deposition process was performed by varying the zinc nitrate concentration (c) in the electrolyte, its temperature (T), and the applied deposition potential (V), and subsequently tracing the influence of such parameters on the morphology (analyzed by scanning electron microscopy), crystallography (X-ray diffraction), and thickness (using the deposition current transient curves) of the ZnO thin films. The variation of the electrodeposition parameters led to the formation of different micro- and nano-structures, such as flat layers, microflowers, nanospheres, webs, and microramifications. Furthermore, the analysis of the deposited charge (by integrating the deposition current transients) illustrated an increase in the deposition rate with the increase of T and c, and a decrease of V. Finally, the maximum ZnO film thickness (similar to 5 ) was obtained for T = 80 A degrees C, c = 0.1 M, and V = -1.5 V. This study provides us important tools to tune the electrochemical growth of ZnO thin films.

Topics
  • scanning electron microscopy
  • x-ray diffraction
  • thin film
  • zinc
  • electrodeposition