Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chybczyńska, K.

  • Google
  • 1
  • 10
  • 27

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Synthesis and properties of bismuth ferrite multiferroic flowers27citations

Places of action

Chart of shared publication
Kałuski, T.
1 / 1 shared
Hilczer, B.
1 / 2 shared
Ławniczak, P.
1 / 3 shared
Kępiński, L.
1 / 1 shared
Pietraszko, A.
1 / 3 shared
Pankiewicz, Radosław
1 / 11 shared
Andrzejewski, Bolesław
1 / 1 shared
Matelski, F.
1 / 1 shared
Cieluch, P.
1 / 1 shared
Łęska, Bogusława
1 / 4 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Kałuski, T.
  • Hilczer, B.
  • Ławniczak, P.
  • Kępiński, L.
  • Pietraszko, A.
  • Pankiewicz, Radosław
  • Andrzejewski, Bolesław
  • Matelski, F.
  • Cieluch, P.
  • Łęska, Bogusława
OrganizationsLocationPeople

article

Synthesis and properties of bismuth ferrite multiferroic flowers

  • Kałuski, T.
  • Hilczer, B.
  • Ławniczak, P.
  • Kępiński, L.
  • Chybczyńska, K.
  • Pietraszko, A.
  • Pankiewicz, Radosław
  • Andrzejewski, Bolesław
  • Matelski, F.
  • Cieluch, P.
  • Łęska, Bogusława
Abstract

<p>Novel, flowerlike bismuth ferrite BiFeO<sub>3</sub>(BFO) multiferroic structures were prepared for the first time by means of microwave assisted hydrothermal synthesis. The flowers are composed of numerous petals formed by BFO nanocrystals and some amount of amorphous phase. The growth of the flowers begins from the central part of calyx composed of only few petals toward which subsequent petals are successively attached. The flowers exhibit enhanced magnetization due to size effect and lack of spin compensation in the spin cycloid. The dielectric properties of the flowers are influenced by BFO amorphous phase resulting in a broad dielectric permittivity maximum at 200-300 K and also by Polomska transition due to anomalous surface magnon damping above the temperature of 450 K. Possible applications of BFO flowerlike structures assume optoelectronic devices, excellent field emitters, effective solar cells, or catalyst supports. © 2013 Springer Science+Business Media New York.</p>

Topics
  • surface
  • amorphous
  • phase
  • magnetization
  • Bismuth