Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mcdonald, Paul F.

  • Google
  • 2
  • 3
  • 75

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2010Physical and mechanical properties of blends based on poly (dl-lactide), poly (l-lactide-glycolide) and poly (ε-caprolactone)15citations
  • 2010In vitro degradation and drug release from polymer blends based on poly(dl-lactide), poly(l-lactide-glycolide) and poly(ε-caprolactone)60citations

Places of action

Chart of shared publication
Lyons, Sean
2 / 36 shared
Geever, Luke
2 / 31 shared
Higginbotham, Clement
2 / 30 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Lyons, Sean
  • Geever, Luke
  • Higginbotham, Clement
OrganizationsLocationPeople

article

In vitro degradation and drug release from polymer blends based on poly(dl-lactide), poly(l-lactide-glycolide) and poly(ε-caprolactone)

  • Lyons, Sean
  • Geever, Luke
  • Higginbotham, Clement
  • Mcdonald, Paul F.
Abstract

<p>Bioresorbable materials are extensively used for a wide range of biomedical applications. Accurately modifying and evaluating the degradation rate of these materials is critical to their performance and the controlled release of bioactive agents. The aim of this work was to modify the physical properties, degradation rate and drug delivery characteristics of thin films for medical applications by blending poly(dl-lactic acid) (PDLLA), poly(l-lactide-co- glycolide) (PLGA) and poly(ε-caprolactone) (PCL). The thin films were prepared using solvent casting and compression moulding and the in vitro degradation study was performed by immersing the films in a phosphate-buffered saline at elevated temperature for a period of 4 weeks. The degradation rate of the materials was analysed by differential scanning calorimetry, tensile testing and weight loss studies. The thermal analysis of the blends indicated that the presence of PLGA or PDLLA in the film resulted in increased degradation of the amorphous regions of PCL. It was observed that the samples consisting of PDLLA with PCL demonstrated the greatest weight loss. The decrease in mechanical properties observed for both sets of polymer blends proved to be similar. The solvent cast technique was selected as the most appropriate for the formation of the polymer/drug matrices, due to the potentially adverse thermal processing effects associated with compression moulding. It was found that modulation of drug release was achievable by altering the ratio of PCL to PDLLA or PLGA in the thin film blends.</p>

Topics
  • impedance spectroscopy
  • amorphous
  • thin film
  • solvent casting
  • differential scanning calorimetry
  • casting
  • polymer blend