People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jana, S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporationcitations
- 2019Consciousness Energy Healing Treatment and its Impact on Physicochemical and Thermal Properties of Tellurium
- 2019Impact of the Trivedi Effect® on the Physicochemical Properties of Antimony
- 2015Potential Impact of Biofield Energy Treatment on the Atomic, Physical And Thermal Properties Indium Powdercitations
- 2015Impact of Biofield Treatment on Atomic and Structural Characteristics of Barium Titanate Powdercitations
- 2015Characterization of Physical and Structural Properties of Brass Powder After Biofield Treatmentcitations
- 2015Evaluation of Biofield Treatment on Physical and Structural Properties of Bronze Powder
- 2015Influence of Biofield Treatment on Physical, Structural and Spectral Properties of Boron Nitridecitations
- 2015Physical, Thermal and Spectroscopical Characterization of Biofield Treated Triphenylmethane: An Impact of Biofield Treatmentcitations
- 2015Effect of biofield treatment on structural and morphological properties of silicon carbidecitations
- 2008Analytical study of tensile behaviors of UHMWPE/nano-epoxy bundle compositescitations
- 2007The control of bearing stiffness using shape memory
Places of action
Organizations | Location | People |
---|
article
Analytical study of tensile behaviors of UHMWPE/nano-epoxy bundle composites
Abstract
<p>Ultra-high molecular polyethylene (UHMWPE) fiber reinforced nano-epoxy and pure epoxy composites in bundle form were prepared and tested for tensile properties. UHMWPE fiber composites are well known for their superior tensile performance, and this work was conducted to assess the effect of adding nanoadditives to the resin and to evaluate possible enhancements or degradations to that attribute. The results showed that tensile tests on various types of UHMWPE fibers/nano-epoxy bundle composites resulted in an increase in modulus of elasticity due to the addition of small amounts of reactive nanofibers (r-GNFs) to epoxy matrix. It was observed that the modulus of elasticity of the composite bundles depended on both volume fractions of the matrix and the weight percent (wt%) of r-GNFs in the matrix. A non-linear relationship was established among them and an optimal modulus was determined by calculation. A three-dimensional surface plot considering these two parameters has been generated which gives an indication of change in modulus of elasticity with respect to volume fraction of matrix and wt% of r-GNFs in the matrix. A Weibull analysis of tensile strengths for the various bundle composites was performed and their Weibull moduli were compared. The results showed that presence of r-GNFs in the composites increased the strength effectively, and 0.3 wt% r-GNFs based composites showed the highest strength. An important ancillary finding is that optimum tensile values are a function not only of the above parameters, but also strongly influenced by the addition of diluents which control the viscosity of the blend.</p>