Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fukumoto, Takashi

  • Google
  • 1
  • 3
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Oxygen evolution behavior of La1−xSrxFeO3−δ electrodes in LiCl–KCl melt7citations

Places of action

Chart of shared publication
Kimura, Shunichi
1 / 1 shared
Goto, Takuya
1 / 1 shared
Suzuki, Yuta
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Kimura, Shunichi
  • Goto, Takuya
  • Suzuki, Yuta
OrganizationsLocationPeople

article

Oxygen evolution behavior of La1−xSrxFeO3−δ electrodes in LiCl–KCl melt

  • Fukumoto, Takashi
  • Kimura, Shunichi
  • Goto, Takuya
  • Suzuki, Yuta
Abstract

<jats:title>Abstract</jats:title><jats:p>Electrochemical reduction processes of oxides in molten salt have been proposed as the carbon-free technologies in order to achieve carbon neutrality. The anodic behavior of La<jats:sub>1<jats:italic>−x</jats:italic></jats:sub>Sr<jats:sub><jats:italic>x</jats:italic></jats:sub>FeO<jats:sub>3−<jats:italic>δ</jats:italic></jats:sub> as an O<jats:sub>2</jats:sub> evolution anode in LiCl–KCl at 723 K was investigated. The results suggested that at 723 K, the electrical conductivity of La<jats:sub>1<jats:italic>−x</jats:italic></jats:sub>Sr<jats:sub><jats:italic>x</jats:italic></jats:sub>FeO<jats:sub>3<jats:italic>−δ</jats:italic></jats:sub> tended to increase with the Sr doping. The anodic reactions of the La<jats:sub>1−<jats:italic>x</jats:italic></jats:sub>Sr<jats:sub><jats:italic>x</jats:italic></jats:sub>FeO<jats:sub>3−<jats:italic>δ</jats:italic></jats:sub> electrodes were characterized by electrochemical measurements in LiCl–KCl + Li<jats:sub>2</jats:sub>O at 723 K. Based on the cyclic voltammograms of the La<jats:sub>0.7</jats:sub>Sr<jats:sub>0.3</jats:sub>FeO<jats:sub>3−<jats:italic>δ</jats:italic></jats:sub> electrode, O<jats:sub>2</jats:sub> evolution has proceeded between 2.7 and 3.6 V. The potential of the La<jats:sub>0.7</jats:sub>Sr<jats:sub>0.3</jats:sub>FeO<jats:sub>3−<jats:italic>δ</jats:italic></jats:sub> electrode during galvanostatic electrolysis has conducted at 39 mA cm<jats:sup>−2</jats:sup> for 15 h has remained stable at 2.8 V, indicating that the stable evolution of O<jats:sub>2</jats:sub> gas was monitored. The corrosion rate was estimated to have the low value of 8.6 × 10<jats:sup>−4</jats:sup> g cm<jats:sup>−2</jats:sup> h<jats:sup>−1</jats:sup>. Electrode surface data obtained after electrolysis indicated that the La<jats:sub>0.7</jats:sub>Sr<jats:sub>0.3</jats:sub>FeO<jats:sub>3−<jats:italic>δ</jats:italic></jats:sub> electrode exhibited excellent chemical and physical stability in LiCl–KCl at 723 K. This indicates that the La<jats:sub>0.7</jats:sub>Sr<jats:sub>0.3</jats:sub>FeO<jats:sub>3−<jats:italic>δ</jats:italic></jats:sub> electrode is promising candidate material as inert anodes for oxide decomposition. As an application of the La<jats:sub>0.7</jats:sub>Sr<jats:sub>0.3</jats:sub>FeO<jats:sub>3−<jats:italic>δ</jats:italic></jats:sub> electrode, the electrolytic reduction of CO<jats:sub>2</jats:sub> was also successfully achieved.</jats:p><jats:p><jats:bold>Graphical Abstract</jats:bold></jats:p>

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • corrosion
  • Oxygen
  • melt
  • electrical conductivity
  • decomposition