Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jakeria, Mohd Rafiuddin

  • Google
  • 1
  • 2
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Evolution and stability of 2-mercaptobenzimidazole inhibitor film upon Al alloy 60616citations

Places of action

Chart of shared publication
Chen, Xiao-Bo
1 / 3 shared
Toh, Rou Jun
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Chen, Xiao-Bo
  • Toh, Rou Jun
OrganizationsLocationPeople

article

Evolution and stability of 2-mercaptobenzimidazole inhibitor film upon Al alloy 6061

  • Chen, Xiao-Bo
  • Toh, Rou Jun
  • Jakeria, Mohd Rafiuddin
Abstract

<jats:title>Abstract</jats:title><jats:p>Organic corrosion inhibitors have become competent alternatives to hazardous chrome conversion coatings due to their rapid adsorption over metal surfaces in corrosive environments. Literature suggests a wide range of organic corrosion inhibitors with high inhibition efficiency, barrier properties, and adsorption mechanisms. However, the long-term durability and protectiveness of an organic inhibitor film need to be understood with in-depth insights on its interaction with heterogenous alloy surfaces like AA6xxx, reduction of galvanic activities and time-resolved degradation due to ionic diffusion. The present article is focused on the time-resolved adsorption and degradation of 2-mercaptobenzimidazole (2-MBI)-induced inhibitor layer/film over AA6061 in 0.1 M NaCl solution. Electrochemical and surface analysis data indicate that the presence of 2-MBI drives the rapid formation of a 20–30 nm thick protective film comprised of constitutional elements of C, S, and N from 2-MBI upon the surface of AA6061 substrate. This film mitigated the corrosion cells associated with nano- and micro-sized Fe and Si-rich intermetallic particles (IMPs) in AA6061. XPS reveals two distinguished bonding states of S and N in the inhibitor film and chemical interactions between 2-MBI and the surface of AA6061. The protective film maintained 65% inhibiting efficiency after 1 day, which progressively degraded due to electrolyte ingress and eventually with a drop in inhibition efficiency down to 21% after 14 days. Inhibitor-induced film over AA6061 reduced the corrosion susceptibility of Fe, and Si-rich IMPs up to 1 day given the subsequent adsorption by S and N heteroatoms. However, this film became thick and defective after 1 day, which undermined its barrier properties against ingress of aggressive ions and facilitated water adsorption.</jats:p><jats:p><jats:bold>Graphical abstract</jats:bold></jats:p>

Topics
  • impedance spectroscopy
  • surface
  • corrosion
  • x-ray photoelectron spectroscopy
  • durability
  • intermetallic
  • susceptibility