Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Stratton-Campbell, D.

  • Google
  • 1
  • 5
  • 89

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010Developments in the soluble lead-acid flow battery89citations

Places of action

Chart of shared publication
Wills, Richard G. A.
1 / 7 shared
Walsh, F. C.
1 / 33 shared
Pletcher, D.
1 / 1 shared
Low, C. T. J.
1 / 10 shared
Collins, J.
1 / 2 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Wills, Richard G. A.
  • Walsh, F. C.
  • Pletcher, D.
  • Low, C. T. J.
  • Collins, J.
OrganizationsLocationPeople

article

Developments in the soluble lead-acid flow battery

  • Wills, Richard G. A.
  • Walsh, F. C.
  • Pletcher, D.
  • Low, C. T. J.
  • Stratton-Campbell, D.
  • Collins, J.
Abstract

The history of soluble lead flow batteries is concisely reviewed and recent developments are highlighted. The development of a practical, undivided cell is considered. An in-house, monopolar unit cell (geometrical electrode area 100 cm2) and an FM01-LC bipolar (2 × 64 cm2) flow cell are used. Porous, three-dimensional, reticulated vitreous carbon (RVC) and planar, carbon-HDPE composite electrodes have been used in laboratory flow cells. The performance of such cells under constant current density (10–160 mA cm?2) cycling is examined using a controlled flow rate (mean linear flow velocity &lt;14 cm s-1) at a temperature of approximately 298 K. Voltage versus time and voltage versus current density relationships are considered. High charge (&lt;90%), voltage (&lt;80%) and energy (&lt;70%) efficiencies are possible. Possible failure modes encountered during early scale-up from a small, laboratory flow cell to larger, pilot-scale cells are discussed. <br/>

Topics
  • porous
  • density
  • impedance spectroscopy
  • Carbon
  • composite
  • current density
  • liquid chromatography