Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pham, Rinh-Dinh

  • Google
  • 1
  • 5
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023A non-iterative parameter identification procedure for the non-local Gurson–Tvergaard–Needleman model based on standardized experiments7citations

Places of action

Chart of shared publication
Hütter, Geralf
1 / 3 shared
Kuna, Meinhard
1 / 3 shared
Kiefer, Bjoern
1 / 5 shared
Seupel, Andreas
1 / 2 shared
Khatib, Omar El
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Hütter, Geralf
  • Kuna, Meinhard
  • Kiefer, Bjoern
  • Seupel, Andreas
  • Khatib, Omar El
OrganizationsLocationPeople

article

A non-iterative parameter identification procedure for the non-local Gurson–Tvergaard–Needleman model based on standardized experiments

  • Hütter, Geralf
  • Pham, Rinh-Dinh
  • Kuna, Meinhard
  • Kiefer, Bjoern
  • Seupel, Andreas
  • Khatib, Omar El
Abstract

<jats:title>Abstract</jats:title><jats:p>Damage mechanics models exhibit favorable properties such as the intrinsic influence of stress triaxiality on damage evolution and the prediction of crack initiation as well as propagation leading to structural failure. However, their application requires advanced expertise hindering the transfer of these models into industrial practice, especially since the parameter calibration is a key obstacle. In this paper, a simplified procedure is proposed for a non-local extension of the Gurson–Tvergaard–Needleman model (GTN), which is a highly accepted model for ductile failure of metals. The procedure is iteration free and requires experimental input data from only two standardized tests. The parameters are determined using look-up diagrams created on the basis of systematic simulations and made available for different material behavior covering the majority of ductile metals. Benchmark tests for three different steels are conducted to evaluate the robustness of the proposed procedure. The reliability of the GTN model is validated for all investigated materials.</jats:p>

Topics
  • impedance spectroscopy
  • experiment
  • simulation
  • crack
  • steel