Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Karakasidis, Anastasios

  • Google
  • 5
  • 18
  • 126

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2023Improving the Through-Thickness Thermal Conductivity of Carbon Fiber/Epoxy Laminates by Direct Growth of SiC/Graphene Heterostructures on Carbon Fibers3citations
  • 2021Radially Grown Graphene Nanoflakes for Tough and Strong Carbon Fiber Epoxy Composites4citations
  • 2020Fire Retardant Action of Layered Double Hydroxides and Zirconium Phosphate Nanocomposites Fillers in Polyisocyanurate Foams3citations
  • 2020Radially Grown Graphene Nanoflakes on Carbon Fibers as Reinforcing Interface for Polymer Composites51citations
  • 2020Multifunctional Structural Supercapacitor Based on Urea-Activated Graphene Nanoflakes Directly Grown on Carbon Fiber Electrodes65citations

Places of action

Chart of shared publication
Sharma, Preetam
2 / 4 shared
Papakonstantinou, Pagona
5 / 15 shared
Salmas, C. E.
1 / 1 shared
Ganguly, Abhijit
4 / 8 shared
Kelly, John
1 / 10 shared
Wieczorek, Kinga
1 / 2 shared
Scatto, Marco
1 / 6 shared
Asimakopoulou, Eleni
1 / 4 shared
Krawczyk, Anna
1 / 1 shared
Andolfo, Michele
1 / 1 shared
Mckee, Maurice
1 / 1 shared
Sisani, Michele
1 / 3 shared
Bastianini, Maria
1 / 2 shared
Zhang, Jianping
1 / 8 shared
Tsirka, Kyriaki
1 / 7 shared
Paipetis, Akiviadis
1 / 1 shared
Hussain, Shahzad
1 / 4 shared
Benson, John
1 / 2 shared
Chart of publication period
2023
2021
2020

Co-Authors (by relevance)

  • Sharma, Preetam
  • Papakonstantinou, Pagona
  • Salmas, C. E.
  • Ganguly, Abhijit
  • Kelly, John
  • Wieczorek, Kinga
  • Scatto, Marco
  • Asimakopoulou, Eleni
  • Krawczyk, Anna
  • Andolfo, Michele
  • Mckee, Maurice
  • Sisani, Michele
  • Bastianini, Maria
  • Zhang, Jianping
  • Tsirka, Kyriaki
  • Paipetis, Akiviadis
  • Hussain, Shahzad
  • Benson, John
OrganizationsLocationPeople

article

Fire Retardant Action of Layered Double Hydroxides and Zirconium Phosphate Nanocomposites Fillers in Polyisocyanurate Foams

  • Wieczorek, Kinga
  • Scatto, Marco
  • Papakonstantinou, Pagona
  • Asimakopoulou, Eleni
  • Karakasidis, Anastasios
  • Krawczyk, Anna
  • Andolfo, Michele
  • Mckee, Maurice
  • Sisani, Michele
  • Bastianini, Maria
  • Zhang, Jianping
Abstract

<p>Modern day energy codes are driving the design and multi-layered configuration of exterior wall systems with a significant emphasis on achieving high performance insulation towards improving energy performance of building envelopes. Use of highly insulating polyisocyanurate (PIR) based materials enhanced with eco-friendly lamellar inorganic fillers reinforces energy performance requirements, environmental challenges and cost reduction without compromising the overall building fire safety. The current work assessed the fire behaviour of PIR modified with three layered fillers, namely MgAlCO<sub>3</sub> (PIR-LDH1), MgAl Stearate (PIR-LDH2) and Zirconium Phosphate octadecylamine (PIR-ZrP3). For each of the fillers, three loadings (2, 4 and 6% by weight) were used. Optical analysis by X-ray diffraction patterns (XRD), cone calorimeter (CC), thermogravimetric (TGA) analysis, post-burning morphological evaluation using field emission scanning electron microscope (FESEM) and diffuse reflectance infrared spectroscopy (DRIFT) analysis, were performed. The results indicated that fire reaction properties and thermal stability of foam samples were enhanced with all three different lamellar inorganic smart fillers. The initial degradation temperature of PIR-layered filler samples was increased, demonstrating that incorporation of flame retardants decelerated the degradation of the PIR foam and contributed to significant char formation, from 19.5% in pure PIR samples to 33% in PIR-6%LDH1 samples. Increasing the filler content also resulted in improved char properties and decreased peak Heat Release Rates (HRR) in the cone calorimeter. Due to the development of a stable char layer, samples containing 6% of ZrP3 did not ignite at 20 kW/m<sup>2</sup> and a reduction of up to 40% in the peak HRR was achieved in PIR-2%ZrP3 samples.</p>

Topics
  • nanocomposite
  • x-ray diffraction
  • zirconium
  • layered
  • thermogravimetry
  • infrared spectroscopy
  • degradation temperature
  • diffuse reflectance infrared spectroscopy