Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Corbett, Andrew

  • Google
  • 1
  • 1
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Combined thermal and electrohydrodynamic patterning of thin liquid films16citations

Places of action

Chart of shared publication
Kumar, Satish
1 / 21 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Kumar, Satish
OrganizationsLocationPeople

article

Combined thermal and electrohydrodynamic patterning of thin liquid films

  • Corbett, Andrew
  • Kumar, Satish
Abstract

<p>Both electric fields and temperature gradients can destabilize the surface of a thin liquid film and lead to the self-assembly of patterns composed of pillar-like structures. Such instabilities offer a relatively simple way to tailor the surface topography of coatings, which in turn can be used to influence coating appearance, texture, and functionality. The present work explores how the simultaneous application of an electric field and temperature gradient can be used to further influence thin-liquid-film instabilities. Both perfect and leaky dielectric materials are considered, and lubrication theory is applied to develop a system of nonlinear partial differential equations for the interfacial height and charge. Linear stability analysis of the lubrication equations shows that in perfect dielectric films, thermal effects tend to dominate the process, often rendering the electric field unimportant. However, in leaky dielectric films, both the thermal and electric fields play important roles and together can produce an increase in the growth rate and a reduction in the dominant wavelength of the instability. Nonlinear simulations of the lubrication equations show that the predictions of the linear theory hold even when the interfacial perturbations are no longer small. The effects of viscoelasticity are considered within the linear theory, and it is found that the growth rate of the instability, but not the length scale, depends on the rheological parameters. The findings of this work suggest that the simultaneous use of an electric field and temperature gradient will allow thin films to be patterned at length scales not accessible when only one of these destabilizing forces is used.</p>

Topics
  • impedance spectroscopy
  • surface
  • theory
  • thin film
  • simulation
  • viscoelasticity
  • texture
  • self-assembly