Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Iglesias-Mejuto, Ana

  • Google
  • 1
  • 7
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Cellulose-in-cellulose 3D-printed bioaerogels for bone tissue engineering17citations

Places of action

Chart of shared publication
García-González, Carlos A.
1 / 8 shared
Ardao, Inés
1 / 4 shared
Laromaine, Anna
1 / 5 shared
Malandain, Nanthilde
1 / 2 shared
Ferreira-Gonçalves, Tânia
1 / 3 shared
Roig, Anna
1 / 5 shared
Reis, Catarina Pinto
1 / 3 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • García-González, Carlos A.
  • Ardao, Inés
  • Laromaine, Anna
  • Malandain, Nanthilde
  • Ferreira-Gonçalves, Tânia
  • Roig, Anna
  • Reis, Catarina Pinto
OrganizationsLocationPeople

article

Cellulose-in-cellulose 3D-printed bioaerogels for bone tissue engineering

  • García-González, Carlos A.
  • Iglesias-Mejuto, Ana
  • Ardao, Inés
  • Laromaine, Anna
  • Malandain, Nanthilde
  • Ferreira-Gonçalves, Tânia
  • Roig, Anna
  • Reis, Catarina Pinto
Abstract

<jats:title>Abstract</jats:title><jats:p>Nanostructured scaffolds based on cellulose with advanced performances and personalized morphologies for bone tissue engineering are under technological development. 3D-printing and supercritical carbon dioxide (scCO<jats:sub>2</jats:sub>) technologies are innovative processing strategies that, when combined, allow the precise fabrication of highly porous aerogel scaffolds. Novel sterile cellulose-in-cellulose aerogels decorated with superparamagnetic iron oxide nanoparticles (SPIONs) are synthesized in this work by an integrated technological platform based on 3D-printing and scCO<jats:sub>2</jats:sub>. Methylcellulose (MC) and bacterial nanocellulose (BC) are two versatile cellulosic polysaccharides with remarkable physicochemical and biological performances, whereas SPIONs are commonly used to functionalize biomaterials aimed at tissue engineering. Aerogels with hierarchical porosity and high structural resolution were obtained according to nitrogen adsorption–desorption analysis, confocal, scanning and transmission microscopies (SEM and TEM). The magnetic properties of SPIONs-doped aerogels confirmed the correct functionalization of the nanostructures. Finally, NIH/3T3 fibroblast cell viability, hemocompatibility with human blood and safety tests (<jats:italic>in ovo</jats:italic> with HET-CAM and in vivo with <jats:italic>Artemia salina</jats:italic>) indicate the biocompatibility of the cellulose-in-cellulose aerogels.</jats:p><jats:p><jats:bold>Graphical abstract</jats:bold></jats:p>

Topics
  • nanoparticle
  • porous
  • Carbon
  • scanning electron microscopy
  • Nitrogen
  • transmission electron microscopy
  • iron
  • porosity
  • cellulose
  • functionalization
  • biomaterials
  • biocompatibility