Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

El-Gendi, Hamada

  • Google
  • 1
  • 3
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Paper sludge saccharification for batch and fed-batch production of bacterial cellulose decorated with magnetite for dye decolorization by experimental design14citations

Places of action

Chart of shared publication
Saleh, Ahmed K.
1 / 2 shared
Badawy, Ahmed S.
1 / 1 shared
Salama, Ahmed
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Saleh, Ahmed K.
  • Badawy, Ahmed S.
  • Salama, Ahmed
OrganizationsLocationPeople

article

Paper sludge saccharification for batch and fed-batch production of bacterial cellulose decorated with magnetite for dye decolorization by experimental design

  • Saleh, Ahmed K.
  • Badawy, Ahmed S.
  • El-Gendi, Hamada
  • Salama, Ahmed
Abstract

<jats:title>Abstract</jats:title><jats:p>Cellulosic wastes represent a great environmental challenge, with potential conversion to product-added value through microbial fermentation. Currently, bacterial cellulose (BC) is considered a promising natural polymer for multiple applications. However, the high production cost challenges its wide application. Hence, the current study evaluated the applicability of paper sludge as a cost-effective medium for both cellulases and BC production. The local isolate <jats:italic>Streptomyces rochei</jats:italic> revealed the highest cellulase production titer (about 3 U/mL) at optimized conditions. For BC production, batch and fed-batch fermentation strategies were evaluated using enzymatically hydrolyzed paper sludge. The results asserted the advantage of fed-batch fermentation for advanced BC production (3.10 g/L) over batch fermentation (1.06 g/L) under the same cultivation conditions. The developed BC membranes were characterized through different instrumental analyses, which revealed an increase in fiber diameters and crystallinity under fed-batch fermentation. Furthermore, BC/magnetite (BC/Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>) nanocomposite was developed by an in-situ approach. The newly developed composite was evaluated for dye removal applications, using methyl orange (MO) as a model. The dye removal conditions were optimized through Box Behnken design (BBD), which indicated maximal MO removal (83.5%) at pH 3.0 and BC/Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> concentration of 0.1 mg/dL after 60 min. Therefore, the current study asserts the good applicability of enzymatically hydrolyzed paper sludge as a medium for cost-effective BC production and the high capacity of BC/magnetite nanocomposite for MO decolorization. The study paves the way for the cost-effective implementation of BC/magnetite nanocomposite for dye removal.</jats:p><jats:p><jats:bold>Graphical Abstract</jats:bold></jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • polymer
  • cellulose
  • crystallinity
  • fermentation