Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Iba, D.

  • Google
  • 1
  • 6
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Tribological properties of 100% cellulose nanofiber (CNF) molding under dry- and boundary lubrication-conditions at CNF/steel contacts5citations

Places of action

Chart of shared publication
Sasaki, S.
1 / 6 shared
Sato, K.
1 / 20 shared
Hashiba, H.
1 / 1 shared
Yamada, K.
1 / 5 shared
Okubo, H.
1 / 1 shared
Nakae, R.
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Sasaki, S.
  • Sato, K.
  • Hashiba, H.
  • Yamada, K.
  • Okubo, H.
  • Nakae, R.
OrganizationsLocationPeople

article

Tribological properties of 100% cellulose nanofiber (CNF) molding under dry- and boundary lubrication-conditions at CNF/steel contacts

  • Sasaki, S.
  • Sato, K.
  • Hashiba, H.
  • Yamada, K.
  • Okubo, H.
  • Nakae, R.
  • Iba, D.
Abstract

<jats:title>Abstract</jats:title><jats:p>Cellulose nanofibers (CNFs), which are plant-derived materials, have recently garnered considerable attention owing to their excellent mechanical properties, such as their low weight and high Young’s modulus. Novel methods for producing 100% CNF bulk structural materials have been developed. However, the tribological properties of CNFs have not been investigated thus far although their mechanical properties are known and are comparable to those of some conventional structural materials. In this study, the tribological properties of a novel biomass material, 100% CNF molding, were investigated based on CNF/steel contacts under dry and boundary lubrication conditions at various temperatures. The friction test results showed that the friction coefficient and wear volume of the CNF molding increased with the test temperature of the CNF/steel tribopair under dry-sliding conditions. Conversely, no significant temperature dependence of the friction and wear properties was observed upon lubrication with a pure polyalfaolefin. The surface analytical results revealed that the amorphization of the CNF molding progressed on the worn surface, especially under dry-sliding conditions at a high temperature. All the results suggested that the friction and wear performance of the 100% CNF moldings strongly depends on the sliding test conditions, and the amorphization process of the CNF molding can affect its friction and wear performance.</jats:p>

Topics
  • surface
  • steel
  • cellulose