Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hernández-Becerra, E.

  • Google
  • 1
  • 6
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Isolation of cellulose microfibers and nanofibers by mechanical fibrillation in a water-free solvent13citations

Places of action

Chart of shared publication
Pereira, M.
1 / 20 shared
Osorio Delgado, Marlon Andrés
1 / 4 shared
Herazo, Cristina Isabel Castro
1 / 15 shared
Rojo, Piedad Felisinda Gañán
1 / 34 shared
Marín, D.
1 / 1 shared
Builes, D.
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Pereira, M.
  • Osorio Delgado, Marlon Andrés
  • Herazo, Cristina Isabel Castro
  • Rojo, Piedad Felisinda Gañán
  • Marín, D.
  • Builes, D.
OrganizationsLocationPeople

article

Isolation of cellulose microfibers and nanofibers by mechanical fibrillation in a water-free solvent

  • Pereira, M.
  • Osorio Delgado, Marlon Andrés
  • Herazo, Cristina Isabel Castro
  • Rojo, Piedad Felisinda Gañán
  • Hernández-Becerra, E.
  • Marín, D.
  • Builes, D.
Abstract

<p>Cellulose from vegetable sources is the most abundant biopolymer on earth. In plants, cellulose is a reinforcement element that conforms to a hierarchical structure. Cellulose micro-/nanofibers can be isolated from the cell wall by top-down strategies involving mechanical processes to be used in applications as a reinforcing material. Nonetheless, its use has been limited as its extraction in an aqueous medium is unfavorable when employed in low-hydrophilic matrices. Therefore, this work proposes a novel homogenization route in which cellulose micro-/nanofibers are directly obtained and dispersed in propylene glycol (PG), which generates more possibilities for these (nano) structures in applications that require water-free environments. Moreover, the influence on the cycle numbers in the morphological, chemical, thermal, and rheological properties was researched. Thus, the obtained micro-/nanofibers presented TEM diameters even below 20 nm. XRD analysis evidenced crystalline planes located at 1 1 ¯ 0 , 110, and 200, and crystallinity degree values up to 80%. Also, FTIR spectra bands in 3340 cm<sup>−1</sup>, 2890 cm<sup>−1</sup>, 1314 cm<sup>−1</sup>, and in the fingerprint region corresponded to native cellulose Iβ. FTIR and TGA confirmed no influence of mechanical cycles on cellulose fibers’ chemical and thermal properties. Furthermore, the increase in the cycle number evidenced a shear-thinning rheological behavior of the suspensions. Considering the above results, it was concluded that the proposed high-pressure homogenization within PG is an approach for vegetable nanocellulose homogenization while maintaining high crystallinity, thermal, and chemical features with huge importance for subsequent processes in the development of nanocomposites with hydrophilic matrices for industrial applications. Graphical abstract: [Figure not available: see fulltext.]</p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • x-ray diffraction
  • extraction
  • transmission electron microscopy
  • thermogravimetry
  • cellulose
  • homogenization
  • crystallinity