People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
El-Shazly, Ahmed H.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2023Cellulose acetate/polyvinylidene fluoride based mixed matrix membranes impregnated with UiO-66 nano-MOF for reverse osmosis desalinationcitations
- 2023Novel solar simulated photocatalytic heterolysis of pharmaceutical wastewater via slag nanocomposite immobilization: Optimization using response surface methodologycitations
- 2020Triple-Layer Nanocomposite Membrane Prepared by Electrospinning Based on Modified PES with Carbon Nanotubes for Membrane Distillation Applicationscitations
Places of action
Organizations | Location | People |
---|
article
Cellulose acetate/polyvinylidene fluoride based mixed matrix membranes impregnated with UiO-66 nano-MOF for reverse osmosis desalination
Abstract
<jats:title>Abstract</jats:title><jats:p>Reverse osmosis (RO) is considered a lifesaver technology to conquer the current catastrophic water shortage situation. However, reaching a competitive RO membrane is a challenging issue. Therefore, this study investigated the optimum polymeric blending ratio between cellulose acetate (CA) and polyvinylidene fluoride (PVDF) to have a new blended polymeric membrane named cellulose acetate polyvinyl (CAPV-X), where X is the PVDF concentration %, with enhanced properties. The optimum prepared CA/PVDF blended membrane was selected for further enhancement with nano sized metal organic framework (UiO-66 MOF). Selection was made depending on each membrane salt rejection. A membrane characterization was performed based on Fourier transform infrared (FTIR), X-ray diffractometer (XRD), scanning electron microscope, thermal gravimetric analysis, and contact angle. FTIR and XRD data confirmed the successful preparation of the blended polymeric membranes CAPV-5, CAPV-7 and CAPV-10. Further, they proved UiO-66 nanofiller impregnation in the hybrid CA/PVDF/UiO-66 membrane (CPU). The addition of PVDF and nano-MOF had a slight positive effect on the membrane thermal stability. The contact angle increased with increasing the PVDF concentration and decreased once more with the impregnation of UiO-66. The RO membrane performance revealed that the optimum CA/PVDF ratio was found to be 93/7% with around 80% salt rejection and a permeate water flux of 4 L/m<jats:sup>2</jats:sup> h. CPU composite membrane was then fabricated to enhance salt rejection and permeate water flux. The testing data indicated that salt rejection and permeate water flux increased over blended CAPV-7 membrane by almost 12% and 42%, respectively. Overall, CPU hybrid membrane could be used for water desalination with a good salt rejection of 90.2% and a permeate water flux of 5.7 L/m<jats:sup>2</jats:sup> h.</jats:p><jats:p><jats:bold>Graphical abstract</jats:bold></jats:p>