People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fangueiro, Raul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2022Development of Multi-Scale Carbon Nanofiber and Nanotube-Based Cementitious Composites for Reliable Sensing of Tensile Stressescitations
- 2021Accelerated weathering of textile waste nonwovens used as sustainable agricultural mulchingcitations
- 2021Micro-structure and mechanical properties of microcrystalline cellulose-sisal fiber reinforced cementitious composites developed using cetyltrimethylammonium bromide as the dispersing agentcitations
- 2020Mechanical and micro-structural investigation of multi-scale cementitious composites developed using sisal fibres and microcrystalline cellulosecitations
- 2018A green approach of improving interface and performance of plant fibre composites using microcrystalline cellulosecitations
- 2018Mechanical performance of composite materials developed using novel re-entrant star auxetic fibrous architectures
- 2018Ultrasonic dispersion of micro crystalline cellulose for developing cementitious composites with excellent strength and stiffnesscitations
- 2018A facile approach of developing micro crystalline cellulose reinforced cementitious composites with improved microstructure and mechanical performancecitations
- 2018Effect of multiscale reinforcement on the mechanical properties and microstructure of microcrystalline cellulose-carbon nanotube reinforced cementitious compositescitations
- 2017Advanced carbon nanotube reinforced multi-scale compositescitations
- 2017A novel approach of developing micro crystalline cellulose reinforced cementitious composites with enhanced microstructure and mechanical performancecitations
- 2017Advanced Carbon Nanotube Reinforced Multiscale Composites
- 2017Characterizing dispersion and long term stability of concentrated carbon nanotube aqueous suspensions for fabricating ductile cementitious compositescitations
- 2017Macro- and nanodimensional plant fiber reinforcements for cementitious compositescitations
- 2015Microstructure and mechanical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion techniquecitations
- 2014Biodegradation Studies of Textiles and Clothing Productscitations
- 2013Processing and performance of carbon/epoxy multi-scale composites containing carbon nanofibres and single walled carbon nanotubescitations
- 2013Braided composite rodscitations
- 2013Mechanical and thermal transmission properties of carbon nanofiber-dispersed carbon/phenolic multiscale compositescitations
Places of action
Organizations | Location | People |
---|
article
Micro-structure and mechanical properties of microcrystalline cellulose-sisal fiber reinforced cementitious composites developed using cetyltrimethylammonium bromide as the dispersing agent
Abstract
<p>This paper reports new hierarchical cementitious composites developed using microcrystalline cellulose (MCC), sisal fibers and cetyltrimethylammonium bromide (CTAB) as the dispersing agent. MCC was dispersed in water without and with CTAB at different concentrations using ultrasonication and the optimum CTAB concentration for achieving homogeneous and stable MCC suspensions was found to be 40%. Hierarchical composites were fabricated using MCC (0.1–1.5 wt% of cement), sisal fibers (20 mm, 0.25% and 0.50 wt% of cement), 40% CTAB and tri-butyl phosphate as the defoaming agent. Mechanical strengths of composites improved significantly at 0.1 wt% MCC, which along with 0.5% sisal fibers improved compressive and flexural strengths by ~ 24% and ~ 18%, respectively. The hybrid reinforcement exhibited a synergistic effect on the fracture behavior of composites improving the fracture energy up to 40%. Hierarchical composites also showed improved fiber-matrix bonding, lower porosity and water absorption, superior hydration, carbonation resistance and durability up to 90 ageing cycles.</p>