Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hassan, Mohammad M.

  • Google
  • 1
  • 2
  • 68

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Thermo-mechanical, morphological and water absorption properties of thermoplastic starch/cellulose composite foams reinforced with PLA68citations

Places of action

Chart of shared publication
Tucker, Nick
1 / 4 shared
Parker, Kate
1 / 2 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Tucker, Nick
  • Parker, Kate
OrganizationsLocationPeople

article

Thermo-mechanical, morphological and water absorption properties of thermoplastic starch/cellulose composite foams reinforced with PLA

  • Tucker, Nick
  • Hassan, Mohammad M.
  • Parker, Kate
Abstract

<p>Abstract: Expanded polystyrene foams are lightweight and cheap, but they have excellent strength and insulation properties. However, their inability to biodegrade in traditional landfill situations makes their disposal problematic. Starch, a polysaccharide, has the potential to replace synthetic thermoplastics for some applications but starch-based foams are hydrophilic, which limits their applications. In this work, polylactide (PLA), a sustainably derived and industrially compostable polymer, was added to starch/cellulose composite foams to enhance their water barrier properties. PLA powder at various weight % was mixed with moistened starch and cellulose mixture, and composite foams were prepared by compression moulding at 220 °C. The thermomechanical and viscoelastic properties of the produced foam materials were analysed by thermogravimetric analysis, dynamic mechanical thermal analysis, mechanical testing, and also by the 3-point compressive mechanical quasi-static testing. It was found that the tensile strength of the composite foams increased with an increase in the PLA loading, which increased from 2.50 MPa for 0% PLA to 3.27 MPa for 9.72% PLA loading. The flexural strength also increased from 345.91 kPa for the 0% PLA to 378.53 kPa for the composite foam containing 4.86% PLA; beyond which the flexural strength started decreasing with an increase in PLA loading. Similarly, the stiffness of the starch/cellulose composite also increased with an increase in PLA loading up to 4.86%, and further increase in PLA loading decreased the stiffness. The flexural modulus of the composite foams increased from 522 MPa for 0% PLA loading to 542.85 MPa for the 4.86% PLA loading. The thermal stability of the starch/cellulose composite foams also increased and the water absorbency decreased with the increased PLA loading. Graphical abstract: [Figure not available: see fulltext.].</p>

Topics
  • strength
  • composite
  • flexural strength
  • thermogravimetry
  • tensile strength
  • cellulose
  • thermoplastic