Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vesterinen, Arja

  • Google
  • 1
  • 7
  • 65

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014In situ production of nanocomposites of poly(vinyl alcohol) and cellulose nanofibrils from Gluconacetobacter bacteria65citations

Places of action

Chart of shared publication
Filpponen, Ilari
1 / 5 shared
Kortaberria, Galder
1 / 13 shared
Zuluaga, Robin
1 / 18 shared
Herazo, Cristina Isabel Castro
1 / 15 shared
Caro, Gloria
1 / 1 shared
Rojo, Piedad Felisinda Gañán
1 / 34 shared
Rojas, Orlando J.
1 / 51 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Filpponen, Ilari
  • Kortaberria, Galder
  • Zuluaga, Robin
  • Herazo, Cristina Isabel Castro
  • Caro, Gloria
  • Rojo, Piedad Felisinda Gañán
  • Rojas, Orlando J.
OrganizationsLocationPeople

article

In situ production of nanocomposites of poly(vinyl alcohol) and cellulose nanofibrils from Gluconacetobacter bacteria

  • Filpponen, Ilari
  • Kortaberria, Galder
  • Zuluaga, Robin
  • Herazo, Cristina Isabel Castro
  • Caro, Gloria
  • Rojo, Piedad Felisinda Gañán
  • Vesterinen, Arja
  • Rojas, Orlando J.
Abstract

<p>Nanocomposites of poly(vinyl alcohol) (PVA) reinforced with bacterial cellulose (BC) were bioproduced by Gluconacetobacter genus bacteria. BC was grown from a culture medium modified with water-soluble PVA to allow in situ assembly and production of a novel nanocomposite that displayed synergistic property contributions from the individual components. Chemical crosslinking with glyoxal was performed to avoid the loss of PVA matrix during purification steps and to improve the functional properties of composite films. Reinforcement with BC at 0.6, 6 and 14 wt% content yielded nanocomposites with excellent mechanical, thermal and dimensional properties as well as moisture stability. Young's modulus and strength at break increased markedly with the reinforcing BC: relative to the control sample (in absence of BC), increases of 15, 165 and 680 % were determined for nanocomposites with 0.6, 6 and 14 % BC loading, respectively. The corresponding increase in tensile strengths at yield were 1, 12 and 40 %, respectively. The results indicate an exceptional reinforcing effect by the three-dimensional network structure formed by the BC upon biosynthesis embedded in the PVA matrix and also suggest a large percolation within the matrix. Bonding (mainly hydrogen bonding) and chemical crosslinking between the reinforcing phase and matrix were the main contributions to the properties of the nanocomposite.</p>

Topics
  • nanocomposite
  • phase
  • strength
  • Hydrogen
  • tensile strength
  • cellulose
  • alcohol