Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Milovanovic, Petar

  • Google
  • 3
  • 21
  • 89

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2020Long‐Term Immobilization in Elderly Females Causes a Specific Pattern of Cortical Bone and Osteocyte Deterioration Different From Postmenopausal Osteoporosis61citations
  • 2016Application of reference point indentation for micro-mechanical surface characterization of calcium silicate based dental materials7citations
  • 2015Addition of a Fluoride-containing Radiopacifier Improves Micromechanical and Biological Characteristics of Modified Calcium Silicate Cements21citations

Places of action

Chart of shared publication
Kroge, Simon Von
1 / 1 shared
Amling, Michael
3 / 6 shared
Wulff, Birgit
1 / 1 shared
Wölfel, Eva Maria
1 / 1 shared
Püschel, Klaus
1 / 4 shared
Krause, Matthias
1 / 16 shared
Busse, Björn
3 / 8 shared
Ritchie, Robert O.
1 / 13 shared
Rolvien, Tim
1 / 1 shared
Schmidt, Felix N.
1 / 2 shared
Hahn, Michael
2 / 4 shared
Riedel, Christoph
1 / 2 shared
Djurić, Marija
1 / 2 shared
Antonijevic, Djordje
2 / 2 shared
Djuric, Marija
1 / 1 shared
Jeschke, Anke
1 / 1 shared
Colovic, Bozana
1 / 2 shared
Jevremovic, Danimir
1 / 4 shared
Kisic, Danilo
1 / 1 shared
Scheidt, Annika
1 / 1 shared
Jokanovic, Vukoman
1 / 6 shared
Chart of publication period
2020
2016
2015

Co-Authors (by relevance)

  • Kroge, Simon Von
  • Amling, Michael
  • Wulff, Birgit
  • Wölfel, Eva Maria
  • Püschel, Klaus
  • Krause, Matthias
  • Busse, Björn
  • Ritchie, Robert O.
  • Rolvien, Tim
  • Schmidt, Felix N.
  • Hahn, Michael
  • Riedel, Christoph
  • Djurić, Marija
  • Antonijevic, Djordje
  • Djuric, Marija
  • Jeschke, Anke
  • Colovic, Bozana
  • Jevremovic, Danimir
  • Kisic, Danilo
  • Scheidt, Annika
  • Jokanovic, Vukoman
OrganizationsLocationPeople

article

Application of reference point indentation for micro-mechanical surface characterization of calcium silicate based dental materials

  • Hahn, Michael
  • Riedel, Christoph
  • Amling, Michael
  • Djurić, Marija
  • Antonijevic, Djordje
  • Busse, Björn
  • Milovanovic, Petar
Abstract

<p>The objective of this study was to elucidate micromechanical properties of Biodentine and two experimental calcium silicate cements (CSCs) using Reference Point Indentation (RPI). Biomechanical characteristics of the cement type and the effects of a radiopacifier, liquid components, acid etching treatment and bioactivation in simulated body fluid (SBF) were investigated by measuring the microhardness, average unloading slope (Avg US) and indentation distance increase (IDI). Biodentine had a greater microhardness than the experimental CSCs, while the Avg US and IDI values were not significantly different among investigated materials. There was a statistically significant difference in microhardness and IDI values between pure CSCs and radiopacified cements (p &lt; 0.05). Micromechanical properties were not affected by different liquid components used. Acid-etching treatment reduced Biodentine's microhardness while cements' immersion in SBF resulted in greater microhardness and higher IDI values compared to the control group. Clearly, the physiological environment and the cements' composition affect their surface micromechanical properties. The addition of calcium chloride and CSCs' immersion in SBF are beneficial for CSCs' micromechanical performance, while the addition of radiopacifiers and acid etching treatment weaken the CSCs' surface. Application of RPI aids with the characterization of micromechanical properties of synthetic materials' surfaces.</p>

Topics
  • surface
  • cement
  • etching
  • Calcium