Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Berg, Albert Van Den

  • Google
  • 3
  • 27
  • 45

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Alternative nano-lithographic tools for shell-isolated nanoparticle enhanced Raman spectroscopy substrates2citations
  • 2017Comparison of three types of redox active polymer for two photon stereolithography3citations
  • 2012Fabrication of cell container arrays with overlaid surface topographies40citations

Places of action

Chart of shared publication
Susarrey-Arce, Arturo
1 / 4 shared
Jacobs, Thimo S.
1 / 2 shared
Gardeniers, Han
1 / 26 shared
Srivastava, Ketki
1 / 3 shared
Odijk, Mathieu
2 / 5 shared
Ostendorp, Stefan
1 / 10 shared
Brzesowsky, Floor A.
1 / 2 shared
Weckhuysen, Bm Bert
1 / 46 shared
Stam, Ward Van Der
1 / 11 shared
Wilde, Gerhard
1 / 265 shared
Jonker, Dirk
1 / 3 shared
Vancso, G. Julius
1 / 6 shared
Hempenius, Mark A.
1 / 7 shared
Folkertsma, Laura
1 / 1 shared
Saile, Volker
1 / 4 shared
Groenendijk, Max
1 / 2 shared
Escalante-Marun, Maryana
1 / 2 shared
Wessling, Matthias
1 / 35 shared
Papenburg, Bernke
1 / 3 shared
Unadkat, Hemant
1 / 2 shared
Blitterswijk, Clemens Van
1 / 4 shared
Subramaniam, Vinod
1 / 7 shared
Rivron, Nicolas
1 / 2 shared
Stamatialis, Dimitrios
1 / 5 shared
Giselbrecht, Stefan
1 / 14 shared
Boer, Jan De
1 / 2 shared
Truckenmüller, Roman
1 / 14 shared
Chart of publication period
2024
2017
2012

Co-Authors (by relevance)

  • Susarrey-Arce, Arturo
  • Jacobs, Thimo S.
  • Gardeniers, Han
  • Srivastava, Ketki
  • Odijk, Mathieu
  • Ostendorp, Stefan
  • Brzesowsky, Floor A.
  • Weckhuysen, Bm Bert
  • Stam, Ward Van Der
  • Wilde, Gerhard
  • Jonker, Dirk
  • Vancso, G. Julius
  • Hempenius, Mark A.
  • Folkertsma, Laura
  • Saile, Volker
  • Groenendijk, Max
  • Escalante-Marun, Maryana
  • Wessling, Matthias
  • Papenburg, Bernke
  • Unadkat, Hemant
  • Blitterswijk, Clemens Van
  • Subramaniam, Vinod
  • Rivron, Nicolas
  • Stamatialis, Dimitrios
  • Giselbrecht, Stefan
  • Boer, Jan De
  • Truckenmüller, Roman
OrganizationsLocationPeople

article

Fabrication of cell container arrays with overlaid surface topographies

  • Saile, Volker
  • Groenendijk, Max
  • Escalante-Marun, Maryana
  • Berg, Albert Van Den
  • Wessling, Matthias
  • Papenburg, Bernke
  • Unadkat, Hemant
  • Blitterswijk, Clemens Van
  • Subramaniam, Vinod
  • Rivron, Nicolas
  • Stamatialis, Dimitrios
  • Giselbrecht, Stefan
  • Boer, Jan De
  • Truckenmüller, Roman
Abstract

<p>This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a micro- or nanoscale. For microthermoforming, we apply a new process on the basis of temporary back moulding of polymer films and use the novel concept of a perforated-sheet-like mould. Thermal micro- or nanoimprinting is applied for prepatterning. The novel cell container arrays are fabricated from polylactic acid (PLA) films. The thin-walled microcontainer structures have the shape of a spherical calotte merging into a hexagonal shape at their upper circumferential edges. In the arrays, the cell containers are arranged densely packed in honeycomb fashion. The inner surfaces of the highly curved container walls are provided with various topographical micro- and nanopatterns. For a first validation of the microcontainer arrays as in vitro cell culture substrates, C2C12 mouse premyoblasts are cultured in containers with microgrooved surfaces and shown to align along the grooves in the three-dimensional film substrates. In future stem-cell-biological and tissue engineering applications, microcontainers fabricated using the proposed technology may act as geometrically defined artificial microenvironments or niches.</p>

Topics
  • impedance spectroscopy
  • surface
  • polymer