Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hardock, F.

  • Google
  • 1
  • 9
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Why Soot is not Alike Soot: A Molecular/Nanostructural Approach to Low Temperature Soot Oxidation16citations

Places of action

Chart of shared publication
Trimis, D.
1 / 3 shared
Suntz, R.
1 / 1 shared
Kubach, H.
1 / 1 shared
Loukou, A.
1 / 1 shared
Bockhorn, H.
1 / 4 shared
Sebbar, N.
1 / 2 shared
Koch, T.
1 / 8 shared
Koch, S.
1 / 6 shared
Hagen, Fabian P.
1 / 4 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Trimis, D.
  • Suntz, R.
  • Kubach, H.
  • Loukou, A.
  • Bockhorn, H.
  • Sebbar, N.
  • Koch, T.
  • Koch, S.
  • Hagen, Fabian P.
OrganizationsLocationPeople

article

Why Soot is not Alike Soot: A Molecular/Nanostructural Approach to Low Temperature Soot Oxidation

  • Trimis, D.
  • Suntz, R.
  • Kubach, H.
  • Loukou, A.
  • Bockhorn, H.
  • Sebbar, N.
  • Koch, T.
  • Koch, S.
  • Hagen, Fabian P.
  • Hardock, F.
Abstract

Due to worldwide increasingly sharpened emission regulations, the development of Gasoline Direct Injection and Diesel Direct Injection engines not only aims at the reduction of the emission of nitrogen oxides but also at the reduction of particulate emissions. Regarding present regulations, both tasks can be achieved solely with the help of exhaust after treatment systems. For the reduction of the emission of particulates, Gasoline (GPF) and diesel Particulate Filters (DPF) offer a solution and their implementation is intensely promoted. Under optimal conditions particulates retained on particulate filters are continuously oxidized with the exhaust residual oxygen so that the particulate filter (PF) is regenerated possibly without any additional intervention into the engine operating parameters. The regeneration behavior of PF depends on the reaction rates of soot particles with oxidative reactants at exhaust gas temperatures. The reaction rates of soot particles from internal combustion engines (ICE) often are discussed in terms of order/disorder on the particle nanoscale, the concentration and kind of functional groups on the particle surfaces, and the content of (mostly polycyclic aromatic) hydrocarbons in the soot. In this work the reactivity of different kinds of soot (soot from flames, soot from ICE, carbon black) under oxidation conditions representative for PF regeneration is investigated. Soot reactivity is determined in dynamic Temperature Programmed Oxidation (TPO) experiments and the soot primary particle morphology and nanostructure is investigated by High-Resolution Transmission Electron Microscopy (HRTEM). An image analysis method based on known methods from the literature and improving some infirmities is used to evaluate morphology and nanostructural characteristics. From this, primary particle size distributions, length and separation distance distributions as well as tortuosities of fringes within the primary particle structures are obtained. Further, UV–visible spectroscopy and Raman scattering and other diagnostic techniques are used to study the properties connected to the reactivity of soot and to corroborate the experimental findings. It is found that nanostructural characteristics predominantly affect reactivity. Oxidation rates are derived from TPO and interpreted on a molecular basis from quantum chemistry calculations revealing a replication/activation oxidation mechanism.

Topics
  • impedance spectroscopy
  • morphology
  • surface
  • Carbon
  • experiment
  • Oxygen
  • Nitrogen
  • combustion
  • transmission electron microscopy
  • activation
  • temperature-programmed oxidation