Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

An, Lu Ling

  • Google
  • 2
  • 5
  • 60

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Experimental Investigation of the Interlaminar Failure of Glass/Elium® Thermoplastic Composites Manufactured With Different Processing Temperatures12citations
  • 2020Experimental and computational analysis of the polymerization overheating in thick glass/Elium® acrylic thermoplastic resin composites48citations

Places of action

Chart of shared publication
Baran, Isnet
2 / 29 shared
Yuksel, Onur
2 / 12 shared
Han, Ning
2 / 2 shared
Seyyed Monfared Zanjani, Jamal
2 / 3 shared
Akkerman, Remko
2 / 423 shared
Chart of publication period
2022
2020

Co-Authors (by relevance)

  • Baran, Isnet
  • Yuksel, Onur
  • Han, Ning
  • Seyyed Monfared Zanjani, Jamal
  • Akkerman, Remko
OrganizationsLocationPeople

article

Experimental Investigation of the Interlaminar Failure of Glass/Elium® Thermoplastic Composites Manufactured With Different Processing Temperatures

  • Baran, Isnet
  • Yuksel, Onur
  • Han, Ning
  • Seyyed Monfared Zanjani, Jamal
  • An, Lu Ling
  • Akkerman, Remko
Abstract

The aim of this study is to evaluate the effect of the processing temperature on the interfacial failure of glass/Elium® 150 composites. The vacuum assisted resin transfer molding technique (VARTM) was used to manufacture glass/Elium® 150 composites at three different process temperatures: room temperature (24℃), 50℃ and 80℃. The interlaminar shear strength, mode I and mode II interlaminar fracture toughness of the laminates were determined by performing the short beam shear (SBS), double cantilever beam (DCB) and end notched flexure (ENF) tests, respectively. It was found that the increase in processing temperature improved the interlaminar shear strength, mode I and mode II interlaminar fracture toughness by approximately 41%, 66% and 227%, respectively. A combined compressive and shear failure mode was found in SBS tests. Fiber bridging was present for all the composite specimens in DCB tests according to the travelling recording camera images. Fracture surface images obtained by scanning electron microscopy (SEM) after the ENF tests revealed that a better fiber-matrix bonding and a ductile matrix failure were obtained for higher processing temperatures.

Topics
  • impedance spectroscopy
  • surface
  • scanning electron microscopy
  • glass
  • glass
  • strength
  • composite
  • resin
  • thermoplastic
  • fracture toughness