People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jean-Marc, Deux
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
PLLA/Flax Mat/Balsa Bio-Sandwich Manufacture and Mechanical Properties
Abstract
This paper describes the manufacture and mechanical characterization of a sandwich material which is 100% bio-sourced. The flax mat/PLLA facings and balsa core can also be composted at end of service life. Manufacture is by vacuum bag moulding. The optimum moulding time and temperature are a compromise between ensuring good impregnation and avoiding degradation, and holding for 60 min at 180A degrees C was found to be satisfactory. The mechanical properties of the bio-sandwich obtained are compared to those of a traditional glass reinforced polyester balsa sandwich. The flexural strength is 30% lower, as predicted based on the facing properties. Skin/core adhesion is also measured using debonding tests. Crack propagation occurs at the skin/core interface in the traditional sandwich but within the facing in the bio-sandwich. The impregnation of the core in the two materials is examined using X-ray micro-tomography.