People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rodrigues, Des
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2021The Radial Point Interpolation Method in the Bending Analysis Of Symmetric Laminates Using HSDTS
- 2021A meshless study of antisymmetric angle-ply laminates using high-order shear deformation theoriescitations
- 2021The bending behaviour of antisymmetric cross-ply laminates using high-order shear deformation theories and a Radial Point Interpolation Methodcitations
- 2021Homogenizing the Elastic Properties of Composite Material Using the NNRPIM
- 2021Numerical analysis of honeycomb-shaped polymeric foams using the FEM and the RPIMcitations
- 2020Analysis of antisymmetric cross-ply laminates using high-order shear deformation theories: a meshless approachcitations
- 2020The numerical analysis of symmetric cross-ply laminates using the natural neighbour radial point interpolation method and high-order shear deformation theoriescitations
Places of action
Organizations | Location | People |
---|
article
Analysis of antisymmetric cross-ply laminates using high-order shear deformation theories: a meshless approach
Abstract
For many years finite element method (FEM) was the chosen numerical method for the analysis of composite structures. However, in the last 20 years, the scientific community has witnessed the birth and development of several meshless methods, which are more flexible and equally accurate numerical methods. The meshless method used in this work is the natural neighbour radial point interpolation method (NNRPIM). In order to discretize the problem domain, the NNRPIM only requires an unstructured nodal distribution. Then, using the Voronoi mathematical concept, it enforces the nodal connectivity and constructs the background integration mesh. The NNRPIM shape functions are constructed using the radial point interpolation technique. In this work, the displacement field of composite laminated plates is defined by high-order shear deformation theories. In the end, several antisymmetric cross-ply laminates were analysed and the NNRPIM solutions were compared with the literature. The obtained results show the efficiency and accuracy of the NNRPIM formulation.