Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Li, Weiqi

  • Google
  • 4
  • 2
  • 60

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Frequency and time dependent viscoelastic characterization of pediatric porcine brain tissue in compression5citations
  • 2021Investigation of the compressive viscoelastic properties of brain tissue under time and frequency dependent loading conditions14citations
  • 2020Dynamic mechanical characterization and viscoelastic modeling of bovine brain tissue24citations
  • 2019Frequency dependent viscoelastic properties of porcine brain tissue17citations

Places of action

Chart of shared publication
Espino, Daniel
4 / 5 shared
Shepherd, Duncan Et
4 / 24 shared
Chart of publication period
2024
2021
2020
2019

Co-Authors (by relevance)

  • Espino, Daniel
  • Shepherd, Duncan Et
OrganizationsLocationPeople

article

Frequency and time dependent viscoelastic characterization of pediatric porcine brain tissue in compression

  • Espino, Daniel
  • Li, Weiqi
  • Shepherd, Duncan Et
Abstract

Understanding the viscoelastic behaviour of pediatric brain tissue is critical to interpret how external mechanical forces affect head injury in children. However, knowledge of the viscoelastic properties of pediatric brain tissue is limited, and this reduces the biofidelity of developed numeric simulations of the pediatric head in analysis of brain injury. Thus, it is essential to characterize the viscoelastic behaviour of pediatric brain tissue in various loading conditions and to identify constitutive models. In this study, the pediatric porcine brain tissue was investigated in compression to determine the viscoelasticity under small and large strain, respectively. A range of frequencies between 0.1 to 40 Hz was applied to determine frequency-dependent viscoelastic behaviour via dynamic mechanical analysis while brain samples were divided into three strain rate groups of 0.01/s, 1/s and 10/s for compression up to 0.3 strain level and stress relaxation to obtain time-dependent viscoelastic properties. At frequencies above 20 Hz, the storage modulus did not increase, while the loss modulus increased continuously. With strain rate increasing from 0.01 /s to 10 /s, the mean stress at 0.1, 0.2 and 0.3 strain increased to approximate 6.8, 5.6 and 4.4 times, respectively. The brain compressive response was sensitive to strain rate and frequency. The characterization of brain tissue will be valuable for development of head protection systems and prediction of brain injury.

Topics
  • impedance spectroscopy
  • simulation
  • viscoelasticity
  • dynamic mechanical analysis