Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wilke, Hans-Joachim

  • Google
  • 7
  • 35
  • 92

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Comparative FEM study on intervertebral disc modeling: Holzapfel-Gasser-Ogden vs. structural rebars6citations
  • 2022Cervical spine and muscle adaptation after spaceflight and relationship to herniation risk1citations
  • 2017A new multiscale micromechanical model of vertebral trabecular bones16citations
  • 2012Fabric based tsai-Wu yield-strength criterion for vertebral trabecular bone in stress space62citations
  • 2011Numerical Homogenization of Trabecular Bone Specimens using Composite Finite Elementscitations
  • 2009Statistical osteoporosis models using composite finite elements7citations
  • 2008Determining Effective Elasticity Parameters of Microstuctured Materialscitations

Places of action

Chart of shared publication
Lerchl, Tanja
1 / 1 shared
Ribeiro, Marx
1 / 2 shared
Nicolini, Luis Fernando
1 / 3 shared
Gruber, Gabriel
1 / 1 shared
Jaramillo, Héctor Enrique
1 / 2 shared
Kirschke, Jan S.
1 / 1 shared
Senner, Veit
1 / 1 shared
Nispel, Kati
1 / 1 shared
Martinez-Valdes, Eduardo
1 / 1 shared
Armbrecht, Gabriele
1 / 1 shared
Albracht, Kirsten
1 / 1 shared
Belavy, Daniel L.
1 / 1 shared
Arvanitidis, Michail
1 / 1 shared
Falla, Deborah
1 / 3 shared
Goell, Fabian
1 / 1 shared
Braunstein, Bjoern
1 / 1 shared
Kaczorowski, Svenja
1 / 1 shared
Rennerfelt, Kajsa
1 / 1 shared
Scheuring, Richard
1 / 1 shared
Karner, Vera
1 / 1 shared
Arora, Nitin Kumar
1 / 1 shared
Sovelius, Roope
1 / 1 shared
Brisby, Helena
1 / 1 shared
Haj-Ali, Rami
1 / 1 shared
Wolfram, Uwe
5 / 24 shared
Galbusera, Fabio
1 / 1 shared
Massarwa, Eyass
1 / 1 shared
Aboudi, Jacob
1 / 1 shared
Zysset, Philippe K.
1 / 8 shared
Gross, Thomas
1 / 4 shared
Schwiedrizk, J.
1 / 1 shared
Pahr, Dieter H.
1 / 4 shared
Schwen, Lars Ole
3 / 3 shared
Rumpf, Martin
3 / 4 shared
Simon, Ulrich
1 / 6 shared
Chart of publication period
2024
2022
2017
2012
2011
2009
2008

Co-Authors (by relevance)

  • Lerchl, Tanja
  • Ribeiro, Marx
  • Nicolini, Luis Fernando
  • Gruber, Gabriel
  • Jaramillo, Héctor Enrique
  • Kirschke, Jan S.
  • Senner, Veit
  • Nispel, Kati
  • Martinez-Valdes, Eduardo
  • Armbrecht, Gabriele
  • Albracht, Kirsten
  • Belavy, Daniel L.
  • Arvanitidis, Michail
  • Falla, Deborah
  • Goell, Fabian
  • Braunstein, Bjoern
  • Kaczorowski, Svenja
  • Rennerfelt, Kajsa
  • Scheuring, Richard
  • Karner, Vera
  • Arora, Nitin Kumar
  • Sovelius, Roope
  • Brisby, Helena
  • Haj-Ali, Rami
  • Wolfram, Uwe
  • Galbusera, Fabio
  • Massarwa, Eyass
  • Aboudi, Jacob
  • Zysset, Philippe K.
  • Gross, Thomas
  • Schwiedrizk, J.
  • Pahr, Dieter H.
  • Schwen, Lars Ole
  • Rumpf, Martin
  • Simon, Ulrich
OrganizationsLocationPeople

article

A new multiscale micromechanical model of vertebral trabecular bones

  • Haj-Ali, Rami
  • Wolfram, Uwe
  • Galbusera, Fabio
  • Massarwa, Eyass
  • Aboudi, Jacob
  • Wilke, Hans-Joachim
Abstract

<p>A new three-dimensional (3D) multiscale micromechanical model has been suggested as adept at predicting the overall linear anisotropic mechanical properties of a vertebral trabecular bone (VTB) highly porous microstructure. A nested 3D modeling analysis framework spanning the multiscale nature of the VTB is presented herein. This hierarchical analysis framework employs the following micromechanical methods: the 3D parametric high-fidelity generalized method of cells (HFGMC) as well as the 3D sublaminate model. At the nanoscale level, the 3D HFGMC method is applied to obtain the effective elastic properties of a representative unit cell (RUC) representing the mineral collagen fibrils composite. Next at the submicron scale level, the 3D sublaminate model is used to generate the effective elastic properties of a repeated stack of multilayered lamellae demonstrating the nature of the trabeculae (bone-wall). Thirdly, at the micron scale level, the 3D HFGMC method is used again on a RUC of the highly porous VTB microstructure. The VTB-RUC geometries are taken from microcomputed tomography scans of VTB samples harvested from different vertebrae of human cadavers (Formula presented.). The predicted anisotropic overall elastic properties for native VTBs are, then, examined as a function of age and sex. The predicted results of the VTBs longitudinal Young’s modulus are compared to reported values found in the literature. The proposed 3D nested modeling analysis framework provides a good agreement with reported values of Young’s modulus of single trabeculae as well as for VTB-RUC in the literature.</p>

Topics
  • porous
  • impedance spectroscopy
  • mineral
  • tomography
  • anisotropic
  • composite
  • lamellae